Impedance, Reflections, and Transformations

Rocky Mountain Ham Radio University Chris Hamilton AE5IT

2017 March 18

Conventional wisdom:

"My antenna is useless above 1.5:1 SWR" (Or is it 2:1? Or 3:1?)

"Antenna tuners only make your transmitter happy."

Noooooooo...

Waves behave just about the same in any medium!

Ripples in water Wake from a boat Guitar strings Radio waves in coax line

Waves sum when they intersect

Waves sum when they intersect

Waves sum when they intersect

Boat wake Sonic booms!

Waves sum when they intersect

Wave machine demo! Shive Wave Machine Torsion rod + weighted crossbars

Wave machine demo! Single pulse Intersecting pulses

Wave Superposition: Standing waves!

Forward & Reverse waves identical amplitude; 100 % reflection

- peaks and troughs 2x amplitude
- nodes have zero amplitude

Chris Hamilton AE5IT – Rocky Mountain Ham Radio University

Wave Superposition: Standing waves!

Forward & Reverse waves *different* amplitude; [0 < 100%] reflection

- peaks and troughs somewhere between 1x & 2x
- nodes have non-zero amplitude

Chris Hamilton AE5IT – Rocky Mountain Ham Radio University

Standing Wave Ratio

100 % reflectionVoltage SWR = $\frac{\text{Vmax}}{\text{Vmin}} = \frac{2.0}{0} = \infty$

Standing Wave Ratio

[0 < 100] % reflectionVoltage SWR = $\frac{Vmax}{Vmin} = \frac{1.0}{0.54} = 1.85:1$

Standing Wave Ratio

0 % reflection (100% absorption!) Voltage SWR = $\frac{Vmax}{Vmin}$ = $\frac{1.0}{1.0}$ = 1:1

Reflections come from impedance mismatches

Standing waves come from reflections

Big impedance mismatch = big standing wave ratio

True in radio, water, mechanical!

Four ways to determine SWR

$$VSWR = V \downarrow max \ | V \downarrow min$$

$$ISWR = I \downarrow max \ | I \downarrow min$$

$$SWR = 1 + \sqrt{(P \downarrow f wd \ | P \downarrow refl)} / 1 - \sqrt{(P \downarrow f wd \ | P \downarrow refl)}$$

$$SWR \sim = (Z \downarrow 0 \ / Z \downarrow load \) 1 \pm$$

Use the one simplest to measure

Wave machine demo! Standing waves Reflections at load Reflections at line discontinuity Impedance transformation

Reflected power is real power

Reflects and re-reflects until lost to heat or absorbed by load

High-loss line will dissipate reflected power faster than lowloss line

What does this mean for radio?

What does this mean for radio?

Lecher lines demo!

50 Ohm TX (FT-817 0.5W 147.55 MHz) 4:1 half-wave coax balun 200 Ohm open wire line (1/8" brass rods, 1/3" on center) Changeable loads

Directional power indicators

Voltage indicators

Power measurement @ RX

Lecher lines demo Matched condition: dummy load

Directional power indicators show forward power No reflected power

Voltage indicators equally bright along entire length of transmission line

No meaningful received power

Mismatched condition: open circuit

Directional power indicators show forward power 100% reflected power

Voltage indicators show standing waves! High & low voltage points 90 degrees apart Repeats every ½ wavelength

No meaningful received power

Mismatched condition: short circuit

Directional power indicators show forward power 100% reflected power

Voltage indicators show standing waves! High & low voltage points 90 degrees apart Repeats every ½ wavelength

Phase shifted compared to open circuit!

Mismatched condition: ¹/₂ wave dipole

~3:1 SWR

Directional power indicators show forward power Some reflected power

Voltage indicators show standing waves! High & low voltage points 90 degrees apart Repeats every ½ wavelength

SWR not as severe as open or short Note signal at receiver

Mismatched condition: full wave dipole ~ 11.5:1 SWR

Directional power indicators show forward power Much reflected power – Severe mismatch, feeding at high voltage point

> Voltage indicators show standing waves! High & low voltage points 90 degrees apart Repeats every ½ wavelength

SWR pretty bad Note signal at receiver

Received signal strength

3:1 SWR

VS

11.5:1 SWR

Received signal strength

3:1 SWR

VS

11.5:1 SWR

Only a few dB difference, not catastrophic! Why???

Received signal strength

Low-loss line!

Reflected signal re-reflects

Eventually radiates

Minus some heat loss

Can we make it better?

Impedance transformer – antenna tuner!

1/2 wave dipole: 4.7 pF shunt cap 23.2 cm from load (or 73.2 cm...)

Full wave dipole: 1.9 pF shunt cap 56.4 cm from load (or 106.4 cm...)

Note received signal strength!

Has SWR changed?

Is the transmitter happy?

Is the transmitter fooled?

Is the *receiver* happy and fooled?

Reflected power is real power – let it radiate!

Lecher Line Demo

Let's make it lossy

Change Tx line dielectric to water

Place thawed otter pops on high voltage points.

Note received signal strength!

Lesson: line loss is everything

Every antenna is multi-band dipole if your feedline is low-loss!

This was common pre-coax.

SWR meters can tell us something important, but can also make us lazy & uncreative.

SWR meters can trick us – where are we measuring?

SWR: Where do we measure?

Most SWR meters are really directional power meters

SWR = $1 + \sqrt{(P \downarrow f w d / P \downarrow r e f l)} / 1 - \sqrt{(P \downarrow f w d / P \downarrow r e f l)}$

If measuring in shack, reflected power is attenuated by line loss!

With 15 ft RG-58 8.5:1 SWR at antenna will look like 4:1 in shack!

Low reflected power / low SWR reading does NOT necessarily indicate an efficient antenna!

How to have a perfect SWR reading

Transmit into a dummy load

Use several hundred feet of crummy old coax

Saturate your coax braid with water

(Does your SWR reading get better over time? You have a problem.)

How to have a perfect SWR reading

Put a tuner as close to your antenna as possible – probably NOT on your desk!

Run lowest-loss line you can manage from tuner to antenna

Window line is okay when it's dry

Homemade ladder line is a cheap & simple project

Acknowledgements

Bill Hays AE4QL

Eric Nichols KL7AJ

Joel Hallas W1ZR

Dean Mertz KOMKT

Denver Area GnuRadio Meetup

Rocky Mountain Ham Radio

Now play with the fun toys!

kd0zyf@gmail.com (yeah, I know)