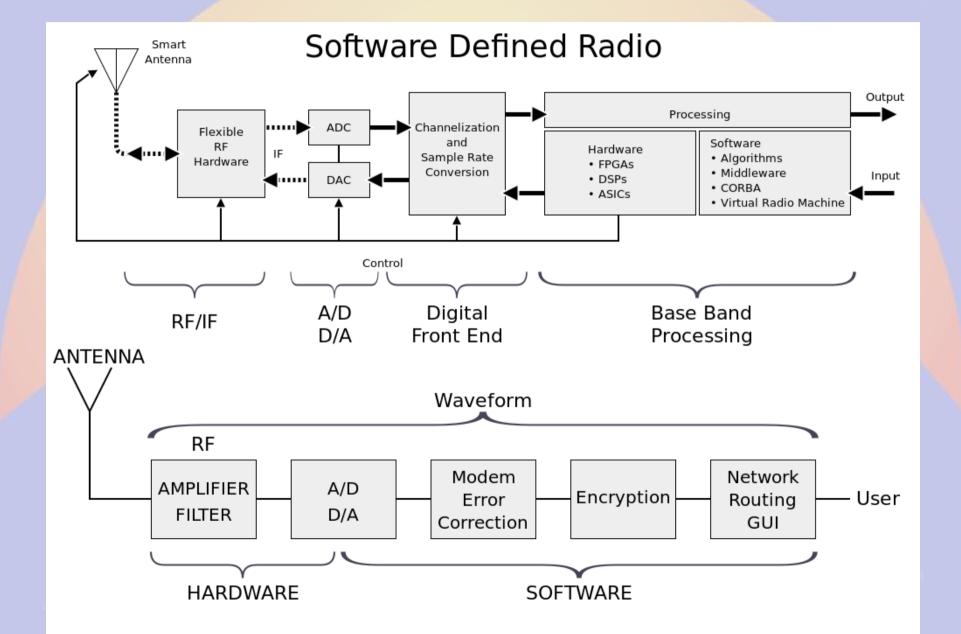
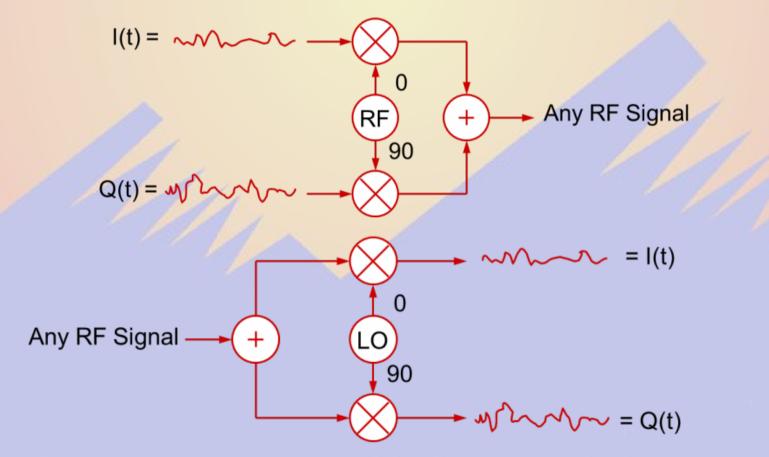
Raspberry Pi SDR

RMHAM University March 17,2018


Willem Schreüder AC0KQ willem@prinmath.com

What is SDR?

- High speed analog to digital converter (A2D)
 - RF front end
- Digital Signal Processing (DSP)
 - Heavy duty filters, processes
- Digital to analog converter (D2A)
 - Audio out
- Control interface
 - Putting it all together



Conceptual Block Diagram

In phase and Quadrature (IQ)

- $S(t) = I(t) \cos(2\pi f t) + Q(t) \sin(2\pi f t)$
- Complex numbers x+iy makes the math elegant

Baseband SDR

- Baseband is the SDR equivalent of IF
 - Extracts a slice of spectrum
 - Center frequency +/- baseband bandwidth
 - Negative frequency is relative to center frequency
- Baseband bandwidth
 - Soundcard 48 kHz
 - Often analog
 - USB or IP 1-10 MHz
 - Limited by ADC speed and processor power

SDR Terminology

- Sample Rate = samples/sec
- Nyquist frequency = half the sample rate
 - Bandwidth given the sample rate
- Complex = IQ as complex numbers
- Decimation = reduce sample rate
- Interpolation = increase sample rate
- Resampling = Decimation or Interpolation
 - Rational = integer / integer
 - Fractional = decimal

Doing It Yourself

- RF front end and A2D converter
 - HackRF, SDR-IQ, RTL2832, FunCube, ...
- High speed CPU
 - A decent computer
- D2A converter
 - A sound card
- Control interface
 - rtl_fm, ...
 - SDR#, Gqrx, GNU Radio, ...

Why the Raspberry Pi?

- Very well supported
- Fast enough to do serious work
- Full multi-tasking GNU/Linux OS
- Ethernet/Wifi connectivity
- Model 3B+ (\$35)
- Model ZeroW (\$10)

Raspberry Pi models

- Raspberry Pi
 - A/A+ 700 MHz CPU & 256MB SDRAM, 1xUSB
 - B 700 MHz CPU & 512MB SDRAM, 2xUSB, Ethernet
 - B+ 700 MHz CPU & 512MB SDRAM, 4xUSB, Ethernet
 - 2B 900 MHz Quad A7 & 1GB SDRAM, 4xUSB, Ethernet
 - 3B 1.2GHz Quad 64bit & 1GB SDRAM, 4xUSB, ether+wifi
 - 3B+1.4GHz Quad 64bit & 1GB SDRAM, 4xUSB, ether+wifi
- Pi Zero
 - 0 1GHz CPU & 512MB SDRAM, USB
 - 0W 1GHz CPU & 512MB SDRAM & Wifi

Must Have Accessories

- Micro SD card
 - Faster is better
 - Class 10
 - UHS 1
 - UHS 3
 - At least 4GB
 - 16GB is ample
 - SanDisk is reliable
- Real time clock
 - PiFace Shim RTC
 - Adafruit DS1307
 - Needed if no network (NTP)

Installing the OS

- Download raspbian and burn to SD card
 - dd if=raspbian*.img of=/dev/mmcblk0 bs=16M
- Enable remote ssh logins
 - touch …/boot/ssh
- Enable wifi of necessary
 - edit .../etc/wpa_supplicant/wpa_supplicant.conf network={ ssid="RMHAM-U" psk="guess1234" scan_ssid=1

Tips and Tricks

- Sudo elevates user permissions
 - sudo rtl_fm ….
- User must be in 'audio' group to play sound
 - sudo adduser willem audio
- ssh allows remote logins
 - ssh rtlpi3
 - log in to rtlpi3 as the same user
 - ssh pi@rtlpi3
 - log in to rtlpi3 as user pi

DVB-T USB

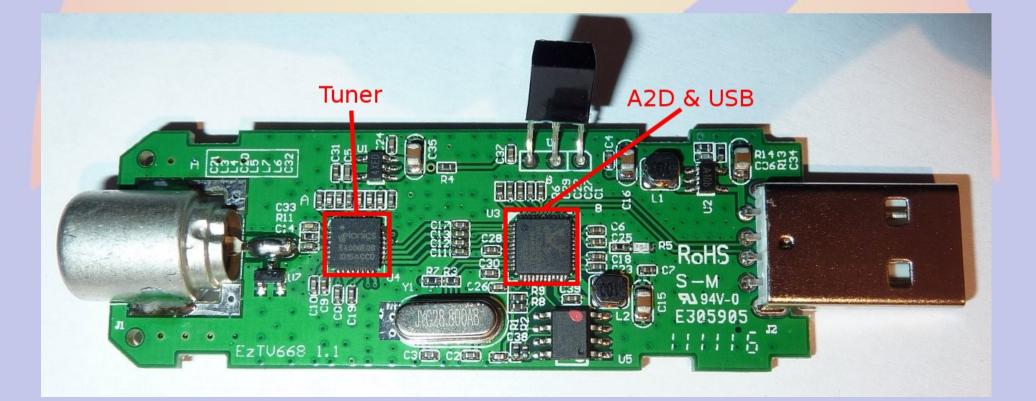
- Digital Video Broadcasting Terrestrial
 - European digital television
- RF to USB A2D
 - MCX RF in
 - R820T tuner
 - RTL2832U demodulator
 - USB 2.0 output
- Cost about \$20

NESDR SMArt

- Aluminum Enclosure
 - RFI protection
 - Heatsink
 - nano 3
- 0.5ppm TXCO
- SMA antenna
- Cost about \$25

HackRF One

- High performance SDR
 - 20 million samples/sec
- Tx and Rx
- Open source hardware
- Expansion headers
- Headquartered in Evergreen
- Cost about \$300

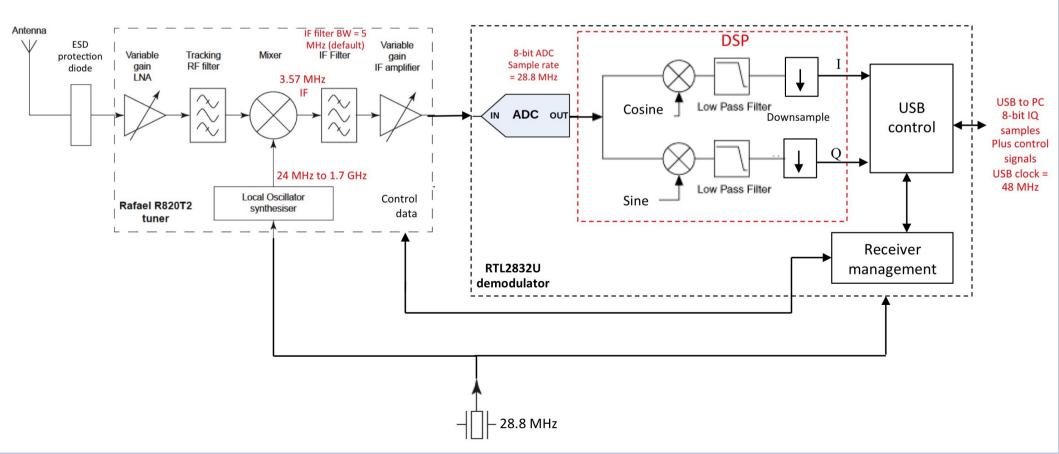

YARD Stick One

- Great Scott Gadgets
- Transceiver for 300-999 MHz
- <mark>\$99</mark>

Inside the Dongle

- R820T or similar tuner
- RTL2832 A2D converter and USB

Raspberry Pi + DVB-T


- Advantages
 - Simple to use
 - Widely supported
 - Can remotely mount DVB-T at antenna
 - Can stream audio or IQ data
- Disadvantages
 - Poor sensitivity and selectivity
- Chip temperature under load is a concern
- High RF environments require shielding

RTL-SDR

- Linux library and code to support DVB-T
- librtlsdr.a library that supports hardware
- rtl_test test hardware
- rtl_fm simple FM receiver
- rtl_sdr IQ stream
- rtl_tcp IQ stream via TCP/IP
- IQ (In-phase and Quadrature) is SDR speak for a data stream of complex numbers which is the discrete samples of the analog signal

Block Diagram

Simplified Block Diagram of NooElec RTL-SDR

Installing RTL-SDR

- Install prerequisites
 - sudo apt-get install -y cmake pkg-config libusb-1.0
- Download RTL-SDR
 - git clone git://git.osmocom.org/rtl-sdr.git
- Build RTL-SDR
 - cd rtl-sdr
 - mkdir build
 - cd build
 - cmake ../ -DINSTALL_UDEV_RULES=ON
 - make
 - sudo make install
 - sudo Idconfig

Remove default modules

- Prevent built-in modules from loading
 - sudo cat <<EOF >>/etc/modprobe.d/blacklist-rtlsdr.conf
 - blacklist dvb_usb_rtl28xxu
 - blacklist rtl2832
 - blacklist rtl2830
 - EOF
- Reboot to clean out modules

Simple Local Receiver

- Connect speakers to rPi audio
- Run rtl_fm to demodulate to stdout
- Play using aplay from stdin

Broadcast radio KYGO

rtl_fm -f 98.5e6 -M wbfm -s 200k -r 44100 | aplay -r 44100 -f S16_LE

rtl_fm

- -f 98.5e6 frequency 98.5MHz
- -M wbfm wideband FM mode
- s 200k sample rate (twice the bandwidth)
- -r 48k output rate

aplay

- -r 48k input rate
- -f S16_LE Signed 16bit little endian

Ham Radio 146.550

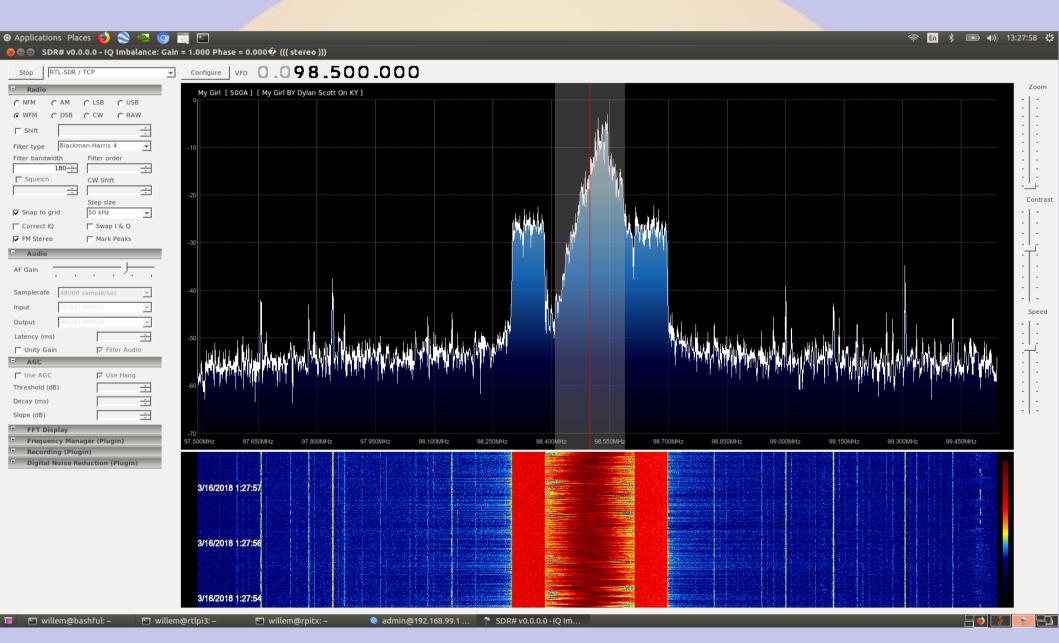
rtl_fm -f 146.550e6 -s12500 -Edeemp | aplay -r 12500 -fS16_LE

rtl_fm

- -f 146.550e6 frequency 146.550 MHz
- s12500 sample rate (twice the bandwidth)
- Edeemp deemphasis

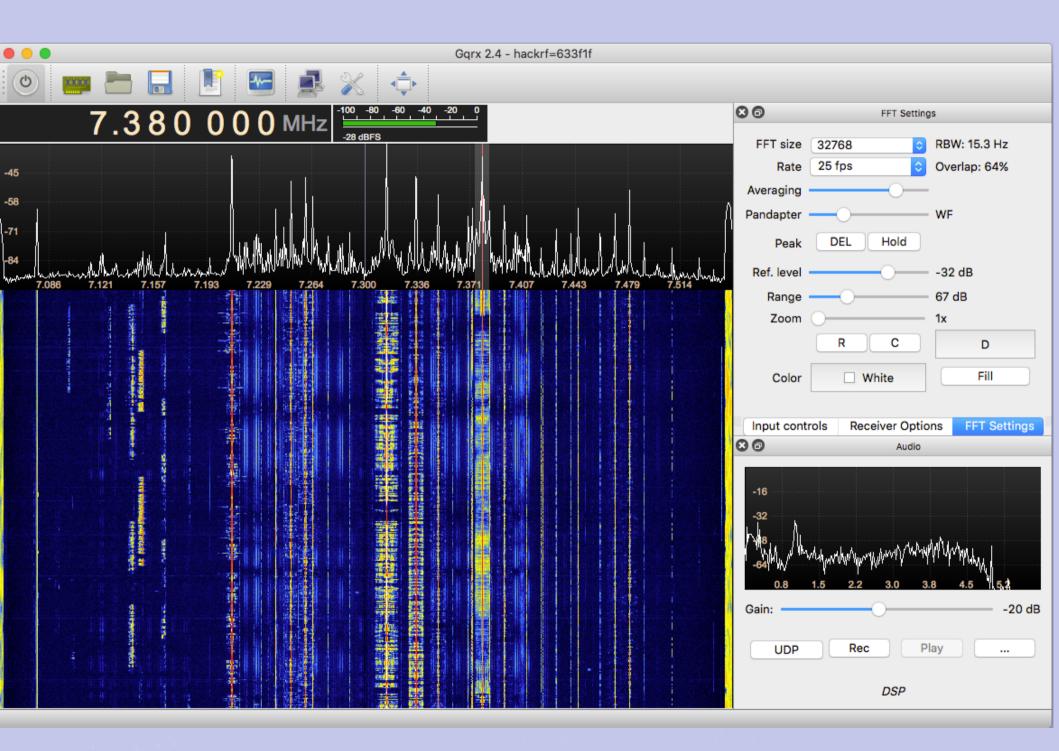
aplay

- -r 12500 input rate
- -f S16_LE Signed 16bit little endian


Remote IQ spectrum server

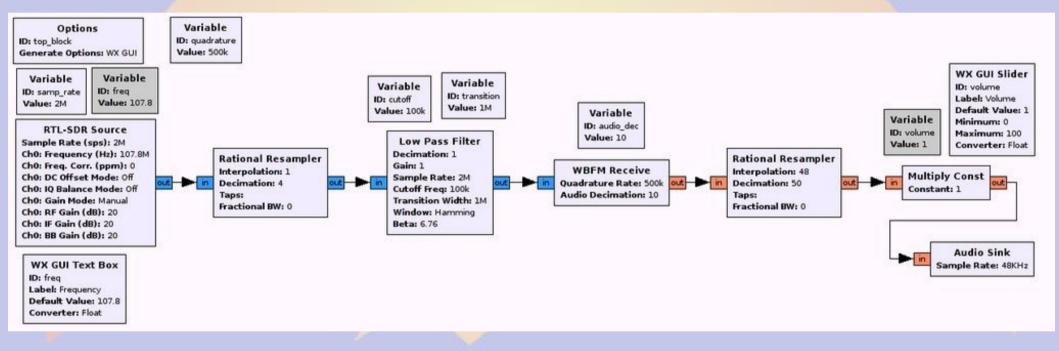
- rtl_tcp -a ip-address
 - Remote IQ server
 - Provide the local external IP address
 - Default 127.0.0.1
 - rtl_tcp -a 192.168.99.30
- Decode this using an SDR program
 - SDR#
 - Gqrx
 - gnu-radio
 - many others

SDR#


- Excellent SDR software
- Supports many hardware types
- Windows Only
 - runs on Linux using mono
- Easy to use but very powerful
- Free and extensible via plugins

SDR# Screen Shot KYGO

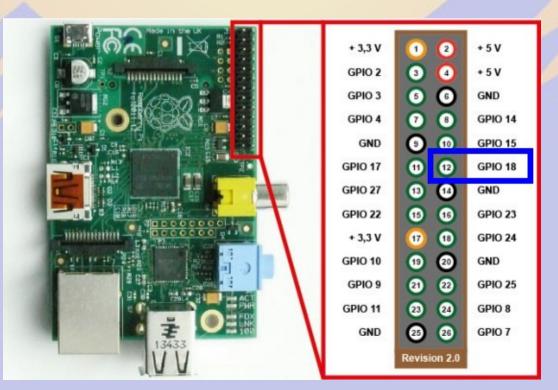
Gqrx


- Pretty good SDR
- Supports many hardware types
- Runs on all platforms
- Easy to use
- Free

GNU Radio

- Extremely powerful
- Supports many hardware types
- Runs on all platforms
- gnu-radio-companion makes it easier to use
 - Python wrapper to connect components
 - Heavy on processor demands
 - Can be run natively on the Raspberry Pi
- Free and extensible

gnu radio companion



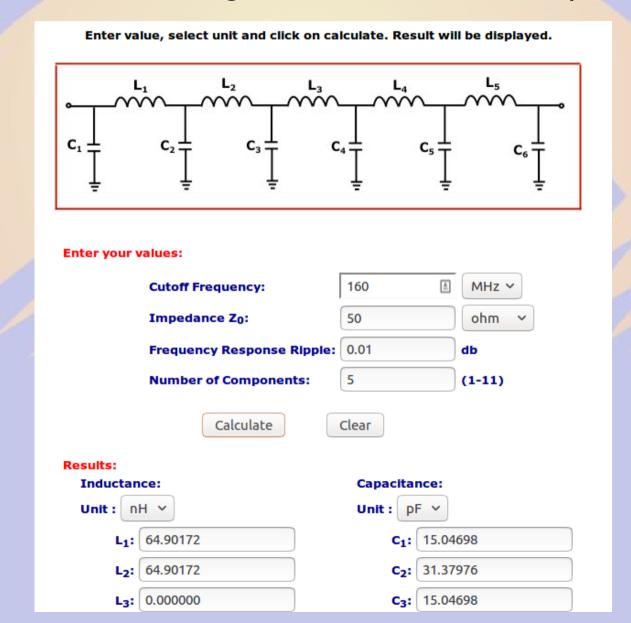
gnu radio hints

- Blue connectors = complex (IQ)
- Orange connectors = real
- Connectors speeds must match

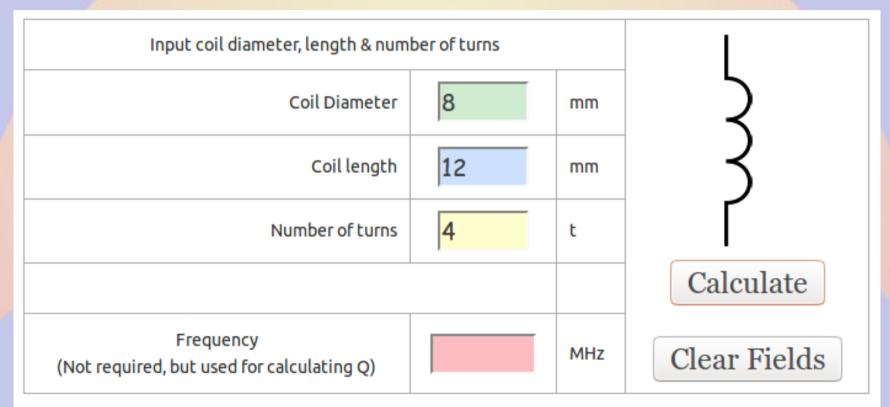
Transmissing using pitx

- Several versions use F50E0 for ham apps
- Takes IQ stream and transmits it
- Transmits on rPi GPIO pin 18

Filtering


- FCC 97.307(e) [30-225 MHz]
 - ... For a transmitter having a mean power of 25 W or less, the mean power of any spurious emission supplied to the antenna transmission line must not exceed 25 μ W and must be at least 40 dB below the mean power of the fundamental emission, but need not be reduced below the power of 10 μ W.
- Low pass filter LFCN-160+
 - 1/8 inch long
 - \$3 each

Insertion Loss (dB)	VSWR (:1)
0.29	1.07
0.53	1.07
0.77	1.09
	1.11
	1.41
2.50	1.74
5.92	2.80
10.64	3.89
21.67	5.22
	5.74
	6.13
39.25	12.26
54.13	59.91
	56.04
	27.59
	14.03
	4.50
	(dB) 0.29 0.53 0.77 0.85 1.60 2.50 5.92 10.64 21.67 30.84 37.58


Designing a Chebyshev Filter

http://www.calculatoredge.com/electronics/ch pi low pass.htm

Designing an air core inductor

https://m0ukd.com/calculators/air-cored-inductor-calculator/

	Calculated inductance, Q and wire length	
Nano H	64.841	nH

Low pass in an Altoids can

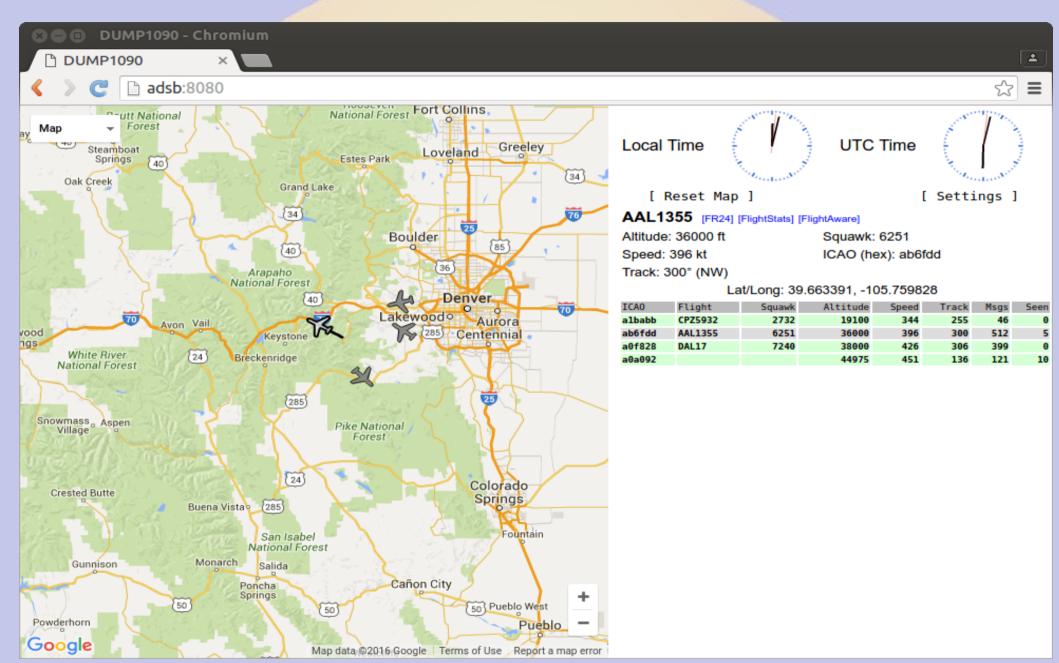
• http://blog.thelifeofkenneth.com/2015/02/designing-and-building-2m-low-pass.html

Installing **pitx**

- Download
 - git clone https://github.com/F5OEO/rpitx.git
- Build
 - cd rpitx
 - sudo install.sh
- Generate IQ
 - pisstv, pifm, piam, pissb, pifsq
- Transmit IQ
 - rpitx

Setting up to transmit

- Create IQ file
 - pifm ac0kq.wav ac0kq.ft
 - Input MUST be 48k mono
- Transmit the file
 - sudo rpitx -m RF -i ac0kq.ft -f 146550
- rpitx flag
 - -f frequency in kHz (130 to 750,000)
 - -i input file
 - -I loop


Where to go next

- Better hardware
 - Great Scott Gadgets HackRF
 - RFspace SDR-IQ
 - many others
- Specialized applications
 - ADSB
 - Freq Show

ADSB receiver

- Building the code
 - git clone git://github.com/MalcolmRobb/dump1090.git
 - cd dump1090
 - make
 - cd ..
- ./dump1090 --net --lon -105 --lat 39
 - --net enables web interface port 8080
 - --lon and –lat sets location

dump1090 ADSB web display

GSG Synchronized Antenna Switching

Show and Tell