Easy SDR Experimentation with GNU Radio

Introduction to DSP (and some GNU Radio)

About Me

- EE, Independent Consultant
 - Hardware, Software, Security
 - Cellular, FPGA, GNSS, ...
- DAGR Denver Area GNU Radio meet-up

Purpose

- Get you into SDR!
- Cover the basics of SDR to get you started
- Not Comprehensive coverage
- Not "How To Do X"
- Some examples to make it real

Audience

- Well, you... duh!
- Radio fundamentals
- Algebra, Trigonometry (just a little!)

Software Defined Radio (SDR)

- What is it?
- "Software"?
 - Implies generalized hardware, reconfigurable for a specific purpose
 - E.g. Computer / Software
- But really... "Digital"
 - Convert an analog signal to digital data
 - Process in the digital realm, rather than analog
 - Digital Signal Processing (DSP)

Frequency Selectivity

Frequency Conversion

Digital Conversion

SDR Evolution

- Super-Heterodyne
 - Demod filtering, processing
 - Detector/Demodulator
 - Additional final IF filtering

SDR Evolution

- •
- Sub-sampling Zero-IF / Direct-Conversion •
 - I/Q, Quadrature —

SDR Evolution

• Direct Sampling, the final frontier

Why?

- Flexibility!
- Avoid analog component imperfections
 - Tolerances, Non-linearity, etc.
 - The math doesn't change
- Greater performance e.g. very sharp filters
- Sometimes cost
- Things you just wouldn't do in analog (OFDM)
- Moore's Law...

Why for Amateurs?

- Flexibility
- Performance
- Advanced modulations
- Digital modes
- Experimentation!

Basic DSP Concepts

- Signals
- Time ↔ Frequency Domains
- Filtering
- Sampling
- Sample Rate Conversion
- I/Q, Quadrature, Analytic Signals
- Frequency Conversion
- De/modulation

Signal

- Sinusoids
- Unit Circle, Trigonometry
- sin(θ)=opp/hyp, cos(θ)=adj/hyp
- If r=hyp=1 and adj=x, opp=y
 - $y=sin(\theta), x=cos(\theta)$
- Frequency is speed around circle
 - Hz (cycles/sec) = 2*pi (rad/sec)

Time ↔ Frequency Domains

- Different ways of looking at a signal
- Transforms, Fourier, DFT/FFT
- Sine wave → "spike"
- Square wave → Odd harmonics
- Pulse \rightarrow Sinc... sin(x)/x
- Negative frequency

Filtering

- Change frequency response
 - and/or phase
- Filtering = convolution
- Convolution and multiplication are time-frequency pairs
- FIR/IIR

Sampling

- Sampling
 - Discrete time
- Quantization
 - Discrete value

Sampling

- Nyquist frequency ($\frac{1}{2} f_s$)
- Spectral Folding
 - Aliasing
 - Inversion
 - Sub-sampling

Sample Rate Conversion

- Decimation
- Interpolation
- Aliasing / Filtering

I/Q Sampling

- In-phase and Quadrature-phase
- AKA Quadrature, Analytic Signal
- Complex Numbers
- VERY common in DSP/SDR
- Very common area of newcomer confusion

$\mathsf{SSB} \to \mathsf{I/Q}$

- Single sideband modulation and IQ sampling are very similar
- Use SSB to understand IQ

What is SSB?

- A derivative of Amplitude Modulation (AM)
- To understand SSB, first understand AM
- Before AM, understand "modulation"

Here we go...

Modulation

Amplitude

Frequency

Phase

Modulation - Basic Types

Carrier & Modulation Signal → AM, FM, PM

Modulation - Math

The modulation function:

$$s(t) = a_m(t) \cos((f_c + f_m(t))t + p_m(t))$$
Amplitude Frequency Phase
$$\rightarrow \text{ "something(t)" means it } \underline{may} \text{ change with time}$$

More concisely:

$$s = a_m \cos((f_c + f_m)t + p_m)$$

AM Modulation

The "universal" modulation function:

$$s = a_m \cos((f_c + f_m)t + p_m)$$

We are only interested in modulating amplitude, so the frequency and phase components drop out.

$$s_{am} = a_m \cos(f_c t)$$

AM Waveform

AM - Math

Recall the AM function:

$$v_{am} = v_m \cos(\omega_c t)$$

The modulation signal v_m is in the range 0 to 1, where 0 yields zero signal output, and 1 yields 100% carrier amplitude.

We want to test our modulation with a sinusoid input so we need to scale and shift it so it is in the range 0 to 1.

$$v_m = \frac{1}{2} (\cos(\omega_m t) + 1)$$

AM – Math 2

$$v_{am} = v_m \cos(\omega_c t) \qquad v_m = \frac{1}{2} (\cos(\omega_m t) + 1)$$

$$v_{am} = \frac{1}{2} (\cos(\omega_m t) + 1) \cos(\omega_c t)$$

$$v_{am} = \frac{1}{2} \cos(\omega_m t) \cos(\omega_c t) + \frac{1}{2} \cos(\omega_c t)$$

AM – Math 3

$$v_{am} = \frac{1}{2} \cos(\omega_m) \cos(\omega_c) + \frac{1}{2} \cos(\omega_c)$$

Use a trigonometric identity to separate the cosine product:

$$\cos(A)\cos(B) = \frac{1}{2}\cos(A-B) + \frac{1}{2}\cos(A+B)$$

$$v_{am} = \frac{1}{4} \cos(\omega_c - \omega_m) + \frac{1}{4} \cos(\omega_c + \omega_m) + \frac{1}{2} \cos(\omega_c)$$

Lower Sideband

Upper Sideband

Carrier Component

AM - Spectrum

AM – Spectrum 2

Increased modulation signal frequency increases distance from carrier.

Inching Toward SSB – AM/SC

AM wastes a lot of energy in the carrier component, can we fix that?

AM with Suppressed Carrier (SC)

AM/SC - Spectrum

That is what it looks like, but how can we make it?

AM/SC - Math

Recall the AM function:

$$v_{am} = v_m \cos(\omega_c t)$$

For AM, v_m was in the range 0 to 1.

For SC, make the range +/- 1, just a regular sinusoid.

$$v_m = \cos(\omega_m t)$$

AM/SC – Math 2

$$v_{am} = v_m \cos(\omega_c t) \qquad v_m = \cos(\omega_m t)$$

$$v_{am} = \cos(\omega_m t) \cos(\omega_c t)$$

$$\cos(A) \cos(B) = \frac{1}{2} \cos(A - B) + \frac{1}{2} \cos(A + B)$$

$$v_{am} = \frac{1}{2} \cos(\omega_c - \omega_m) + \frac{1}{2} \cos(\omega_c + \omega_m)$$

$$\int_{\text{Lower Sideband}} \text{Upper Sideband} \qquad \text{No Carrier Component!}$$

Upper Sideband

AM/SC "breaks" AM

Wrong envelope! Carrier amplitude inversion!

SC/SSB – Electronics

- Multiplying negative values
 - One, two, and four quadrant
- Switchers (Mixers)
 - Diode Ring (Balanced Mixer)
 - Transistor
- Modulators (Multipliers)
 - Logarithmic amplifiers (Gilbert Cell)

Finally... AM/SSB

That is what it looks like, but how can we make it?

AM/SSB - Math

Remember the cosine product trig identity?

$$\cos(A)\cos(B) = \frac{1}{2}\cos(A-B) + \frac{1}{2}\cos(A+B)$$

Here is another:

$$\sin(A)\sin(B) = \frac{1}{2}\cos(A-B) - \frac{1}{2}\cos(A+B)$$

Notice that minus sign?

 $\cos(A)\cos(B) + \sin(A)\sin(B) = \cos(A - B)$

Just the lower sideband!

SSB – Time Domain

Just a sine wave?

SSB – Time Domain 2

Carrier and SSB signal

AM/SSB – Implementation

Simple output, but complicated input...

$$\cos(A)\cos(B) + \sin(A)\sin(B) = \cos(A - B)$$

Recall that $sin(x) = cos(x - 90^\circ)$, so we just need a 90° phase shift of our carrier and modulating signal frequencies.

Electronic SSB Modulator, Filtering

This Might Look Familiar...

Phase Quadrature

- Quadrature means 90 degrees
 - Latin "Quadratura" (making) a square
- Sine and Cosine are in quadrature

Quadrature – So what?

- Rotate a point around the unit circle
- Look at either the sine or cosine graph
 - Can you tell rate of rotation (frequency)?
 - Yes.
 - Can you tell the direction of the rotation?
 - No! (But you can if you see both sine and cosine)
- So quadrature allows frequency <u>and</u> direction
- E.g. "Negative Frequency"

Quadrature Sensors

http://www.creative-robotics.com/quadrature-intro

Real Signals

No difference between positive or negative frequencies. Thus upper and lower sideband mirror images.

IQ Signals Make You Smarter

- $I = In-phase \rightarrow Cosine \rightarrow Real$
- $Q = Quadrature \rightarrow Sine \rightarrow Imaginary$

Why Complex Numbers?

- Why not just treat I and Q as two real values?
- In some ways IQ is like 2x sample rate, some ways not...
 - 2x bandwidth, but still no "negative frequency"
 - 90° offset is key, 2x would be 180°
- Complex numbers represent the relationship between I&Q, especially during operations; like multiplication.
- Beautiful Math... Euler's Formula:

 $e^{ix} = \cos x + i \sin x$

SSB IQ

$$v_{ssb} = v_m e^{i\omega_c t}$$

SSB is just a multiplication in the complex domain!

(As is any frequency translation)

Radio Selection

- Transmit? Full duplex?
- Frequency Range
- Sampling Rate / Bandwidth
- ADC resolution
- On-board DSP FPGA, CPU
- Connectivity
 - USB2/3, Ethernet, PCIe, ...

Some Radios...

- Realtek Dongles
- HackRF
- Ettus Research
- BladeRF
- LimeSDR

Application Ideas

- Basic AM/FM modulation
 - Multi-channel relay
- Packet Radio
- Satellite
- Direction Finding
- RADAR
- Atmospheric/propagation monitoring, Ionosphere, etc.
- HAM IoT

Demos

- GNU Radio
- Fosphor
 - Tx spectrogram image
- Simple AM/SSB/FM radio, CTCSS, trunking
 - A CTCSS multi-channel full duplex relay
- Digital Modes OFDM
- Simultaneous Audio, Slow-scan video, data
- Digital audio

