IP Networking and Routing

John W0VG Willem AC0KQ

IPv4 Network Definition

- Packet switched network
 - Introduced in 1981
 - Replaced older circuit switched networks
- Advantages
 - Decentralized, hierarchical configuration
 - Robust, dynamic routing
 - Supports 4,294,967,296 unique addresses
- Every device must have a unique IP address
- Network of networks (subnets)

RMHAM NetLab

- Subset of mountain top sites
 - Purple wires are microwave links
 - Red wires are commercial internet (VPN) links
 - Blue wires are local (LAN) links
- Configured to operate like the real network
 - Same IP addresses but blank passwords
 - OSPF for routing
 - "The Internet" is a single router + fancy routing
- Used for training and testing by NetOps

Mikrotik Hardware

- RouterOS is designed for routing
 - Custom Linux kernel
 - Supports IPv4, OSPF, BGP, ...
 - Any port can perform any function
 - Same interface regardless of model
 - Command line and well designed GUI
- Reasonable cost
 - Very reliable (but lightning...)
 - Targets Wireless ISP market
 - Long range radios (2GHz, 5GHz, 60GHz)
 - International versions can operate in Ham Band

Classic IP tools

- ping
 - Tests end-to-end connectivity
- traceroute
 - Shows the route the packet takes
 - Windoze calls it tracert
- ifconfig
 - Show local IP configuration
 - Windoze calls it ipconfig
- route
 - Displays routes

Other versions of IP

- IPv1, IPv2, IPv3
 - Early development versions
- IPv4
 - What the internet is mostly based on
- IPv5
 - Experimental Quality of Service addition
- IPv6
 - Next generation IP (128 bit addresses)
 - New and improved!

Uses of IP

- Most successful protocol ever
 - Ubiquitous internet spans the world
 - Numerous private/isolated versions
 - RMHAM
 - Phone companies
 - Department of Defence
 - NASA Deep Space Network (with special mods)
- Applications
 - Data (HTTP, SMTP, FTP, ...)
 - Voice Over IP (VoIP)
 - Video streams (RTSP etc)
 - Internet of Things (IoT)

IP Addresses

- Basic building block to identify end points
- 32 bits organized as 4 octets
 - 10.30.20.6
 - 00001010 00011110 00010100 00000110
 - subnet part (24 bits)
 - host part (8 bits)
 - All 32 bits are used to identify the device
 - The subnet part determines what can be reached locally
 - This can also be written as 10.30.20.6/24
- IPv6 expands this to 128 bits

What is a subnet?

- Part of a greater (interconnected) network
- Group of IP addresses that can directly communicate (e.g. via ethernet or WiFi)
- Sometimes called Local Area Network (LAN)
- Devices on a subnet
 - Have the same leading bits (subnet address)
 - Can directly talk to other devices on the subnet
- Hardware that facilitate device to device communications on a subnet is a hub or switch

Reserved Subnet Addresses

- Network address (host part all zeroes)
 - 10.30.20.0/24
- Broadcast address (host part all ones)
 - 10.30.20.255/24
- Every subnet has these reserved addresses
 - Except /32 and /31
- Other special addresses are just by convention
 - Example: gateway often the lowest address
 - 10.30.20.1/24

Bridging and Routing

- Only hosts on the same subnet can be reached directly
 - Subnet part must be the same
- Hosts with a different subnet part must be routed
 - Packets are sent to a special device called a router
 - The router figures out what to do
- A bridge is a smart switch/stupid router that connects two parts of a subnet
 - Must be the same subnet
 - The bridge knows about **all** devices on the subnet

Sidebar: Ethernet

- Introduced in 1980 and meshed well with IP
 - Standardized in 1983
- Most commonly used local connections
 - Started at 10Mbps, approaching 1 Tbps
 - Coax, twisted pair (copper) and fiber media
 - Beat out token ring, FDDI, and other technologies
- Ethernet hubs and switches extend network
 - Spanning Tree Protocol (STP) resolves loops
 - No user configuration required
 - All devices are bridged

Terminology

- IP Address
 - The unique 32 bit address for a device
- Netmask
 - A bit mask indicating the subnet part
 - 255.255.255.0 or /24 or 11111111111111111111111100000000
- Slash notation
 - Shorthand combining IP with netmask
 - 10.30.20.6/24
- Gateway
 - Where to send packets that do not match our subnet
 - MUST be a device on our subnet

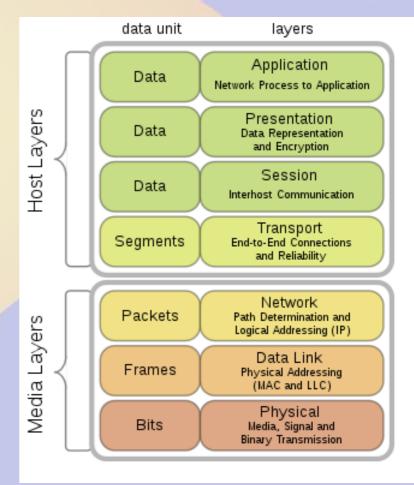
Domain Name System (DNS)

- Not required for IP to function
 - Provides symbolic names for humans to use
- Symbolic names for IP addresses
 - router.thorodin.rmham = 10.30.20.1
 - radius.thorodin.rmham = 10.30.20.6
- DNS server provides translation
 - Must be an IP address (can be more than one)
 - Does not have to be on our subnet
 - Google DNS 8.8.8.8, 8.8.4.4
- DNS names are read right to left

How DNS works

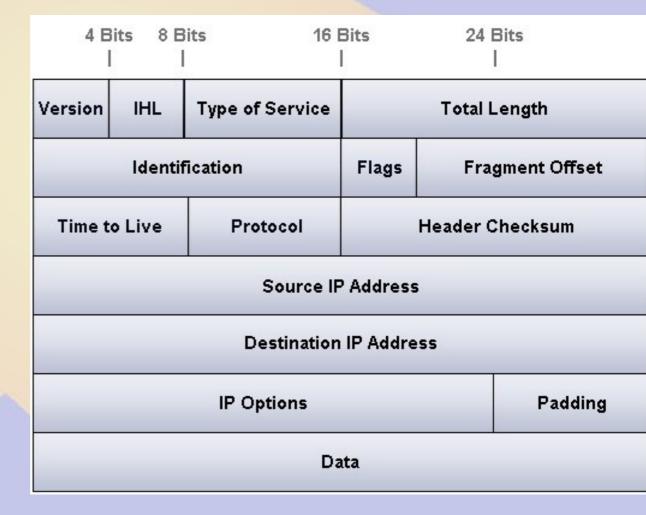
- Server sends a UDP packet to DNS server
 - What is the IP address for www.rmham.org?
- Server sends a UDP packet to:
 - root server (IP address for www.rmham.org?)
 - UDP reply: Ask 192.19.56.1 (.org root)
 - .org root (IP address for www.rmham.org?)
 - UDP reply: Ask 162.159.24.80 (ns1.bluehost.com)
 - ns1.bluehost.com (IP address for www.rmham.org?)
 - UDP replay: www.rmham.org = 23.237.17.75
- Server UDP reply to host
 - www.rmham.org = 23.237.17.75

Setting the IP Address Manually


- Determine your subnet address and netmask
 - Example: 10.30.20.0/24
- Select an unused address within that netmask
 - Example: 10.30.20.6
 - Duplicate IP addresses causes havoc
- Determine the gateway address
 - MUST be on our subnet
 - LAN address of router
 - Often first address on subnet (10.30.20.1)
- DNS server (optional)
 - Can be anywhere, often 8.8.8.8

Sidebar: Protocols

- Common language between devices
 - Exchange specific type of information
 - Builds on other protocols
 - Can be specialized packets
- Example data protocols
 - ARP (address resolution on LAN)
 - ICMP (routing error information)
 - TCP/IP (generic virtual switched circuit)
 - HTTP (browser-server built using TCP/IP)


OSI Network Model

- Conceptual representation
 of network protocols
 - HTTP Application
 - TCP Transport
 - IP Network
 - Ethernet Data Link
 - IEEE 802.3u Physical
- Upper layers hide complexity of lower layers

Anatomy of an IP packet

- Version=4
- IHL=IP Hdr Len
- Type of Service
 - Min delay
 - Max throughput
 - etc.
- Flags & Frag Off
 - Large packets

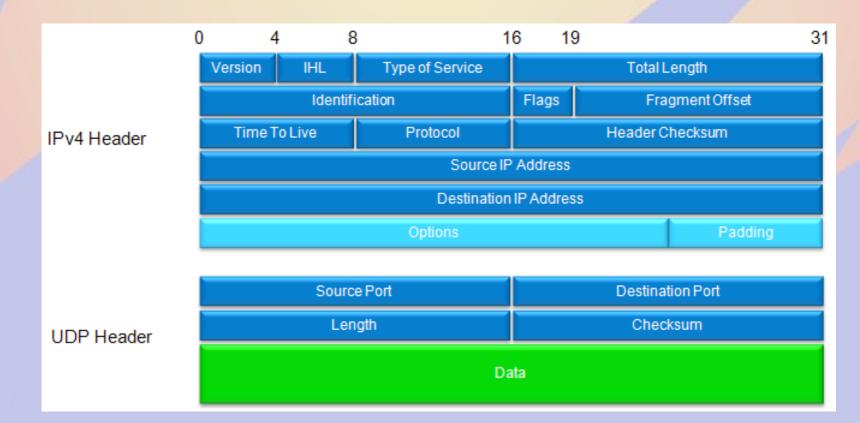
Protocols add additional header in data section

Internet Control Message Protocol (ICMP)

- Used for debugging and error messages
- Replies generated from IP stack (OS)
 - Unreachable
 - TTL exceeded
 - Redirect
- Used by ping and traceroute

Anatomy of an ICMP Packet

Typically 8-16 bytes in addition to IP header


IP Datagram				
	Bits 0–7	Bits 8-15	Bits 16-23	Bits 24-31
IP Header (20 bytes)	Version/IHL	Type of service	Length	
	Identification		flags and offset	
	Time To Live (TTL)	Protocol	Checksum	
	Source IP address			
	Destination IP address			
ICMP Header (8 bytes)	Type of message	Code	Checksum	
	Header Data			
ICMP Payload (optional)	Payload Data			

User Datagram Protocol (UDP)

- Single packet datagrams
 - Works well for smaller payloads
- Best effort delivery
 - Unordered arrival
 - Optional checksum
- Used by many higher level protocols
 - DNS, NTP, NFS, ...
 - Software Defined Networking (SDN)
 - VOIP and repeater linking

Anatomy of a UDP Packet

- Adds only port numbers, length and checksum
- One packet contains the complete message
 - Works well for DNS, NTP, etc.

Transmission Control Protocol (TCP)

- Bidirectional virtual circuit
 - Input = Output
 - Traffic arrives in order
 - Retransmit, congestion, etc happens invisibly
 - No inherent framing
- Used by many higher level protocols
 - Terminal connections (ssh, telnet)
 - Data transfer (HTTP, FTP, scp, rsync)

Dynamic Host Configuration Protocol (DHCP)

- Server (router) assigns unique IP address
 - Single point administration
 - Assigns IP address from pool
 - Can do IP reservation by MAC address
- Specialized IP packets to configure host
 - Client sends broadcast packet to discover server
 - Server sends unicast offer to provide configuration
 - Client sends accept request
 - Server acknowledges acceptance
- Always sets IP address
- Usually sets netmask, gateway, DNS server

Demo site: LabDemo

- ether1 rest of the network
- LAN (bridge1 = ether2 ether5)
 - Address: 10.30.80.1
 - Subnet: 10.30.80.0/24
 - DHCP: 10.30.80.200-250
- Routing table
 - 10.30.80.0/24: send to bridge1
 - anything else to be determined

Address Resolution Protocol (ARP)

- Translates IP address to MAC address
 - Needed for ethernet to work (uses MAC addresses)
 - Works only on LAN
 - same wifi or ethernet network
- Media Access Control (MAC)
 - 48 bit address
 - Address scheme for IEEE 802
 - ethernet, WiFi, Bluetooth, ...
- Generally requires no user configuration
 - ARP just does the right thing for us automatically

How Routing Works

- Forward a packet towards its final destination
 - Routing is done one hop at a time
 - What port (neighbor) do you send it to?
 - Based on destination IP address
- Home or edge routers use the default gateway
 - Anything the router doesn't know goes here
 - Typically just one connection to the internet
- Multi-port routers select the "best" way
 - Routing tables determine next hop
 - Static routing
 - OSPF intra-domain routing
 - BGP inter-domain routing
 - RIP, IS-IS, EIGRP, EGP, etc.

Classfull Inter-Domain Routing

- Prior to 1993 routers assumed classes
 - Class A = 1.x.x.x to 126.x.x.x
 - 126 nets of 16,777,326 hosts each
 - Class B = 128.0.x.x 191.255.x.x
 - 16,384 nets of 65,536 hosts each
 - Class C = 192.0.0.x 223.255.255.x
 - 2,752,512 nets of 256 hosts each
 - Class D = 224.x.x.x-239.x.x.x
 - Multicast
 - Special cases 0.x.x.x, 127.x.x.x, etc

Classless Inter-Domain Routing (CIDR)

- Breaks network/host at any bit position
- Example: 10.30.20.0/24
 - Class A address (10.x.x.x)
 - /24 makes it a class C (256 addresses)
- Example: 10.30.20.96/29
 - No classed equivalent
 - 8 addresses
 - Netmask 11111111 111111111111111000 = 255.255.255.248
- Extended the life of IPv4
 - Many more unique networks

Special Subnets/Addresses

- 0.0.0.0 Any IP address
- 0.0.0.0/0 Any (or default) network
- 255.255.255.255 Broadcast IP address
- 127.0.0.1 Loopback address
- 10.x.x.x, 192.168.x.x, 172.16-31.x.x Private
 - Not publicly routed but can be internally routed
- 44.x.x.x AMPR (Amateur Packet Radio)

Ports

- 16 bit number 0-65535
- Defines a program to talk to
- Ports 0-1023 are *well-known* ports
 - Defines specific services
 - 22 ssh (secure shell)
 - 25 smtp (mail)
 - 80 http (web)
- Ephemeral ports often used for user programs
- Notation IP:port
 - 10.30.20.6:22 means 10.30.20.6 port 22

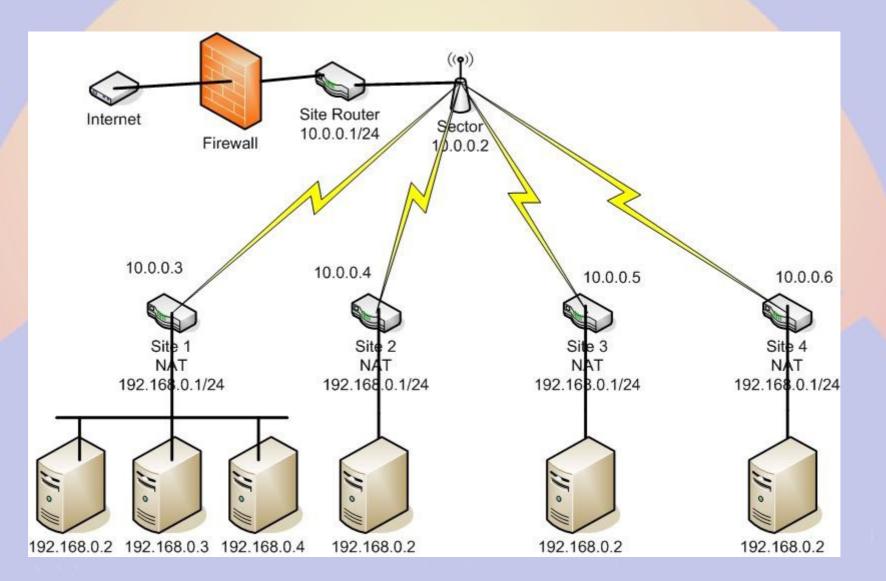
Network Address Translation (NAT)

- Also called masquerade
 - Uses port numbers to share an (external) IP
 - Router pretends to be devices behind it
- Router rewrites packets both ways
- Extended the life of IPv4 by decades
- Limited security measure
 - Only the router can be reached from internet
 - Port forwarding allows inbound connections

Connection to the Network with NAT

- This is how most home routers work
 - Most consumer routers can only operate this way
- ether1 = DHCP client
 - Configures network connection
 - address 10.30.31.250/24
 - gateway 10.30.31.1
 - DNS 10.30.20.6
 - Add NAT on ether1
- We present as 10.30.31.250 to the network
 - Router translates to our local IP

Routing with NAT


- 10.30.80.x are sent directly via the bridge
- Everything else forwarded with NAT
 - All outbound packets are rewritten to be from our WAN (external) address
 - Our WAN IP must be routable
 - Builds the NAT table
 - All inbound packets are rewritten and forwarded to the right device on the LAN
 - NAT table used to remember where to

Detailed NAT Example

- ssh 10.30.80.200 to 10.30.20.6
 - 10.30.80.200 to 10.30.80.1 via bridge
 - source 10.30.80.200 : 32400, destination 10.30.20.6 : 22
 - Router rewrites packet forwards on network
 - source 10.30.31.1 : 36700, destination 10.30.20.6 : 22
 - Reply returned to router
 - source 10.30.20.6 : 22, destination 10.30.31.1 : 36700
 - Router rewrites reply, forwards to 10.30.80.200
 - source 10.30.20.6 : 22, destination 10.30.80.200 : 324000
- Happens for may packets
 - TCP/IP builds virtual circuit
 - ssh adds encryption

Typical ISP Sector with NAT

Entire sector is one subnet, client site does NAT

Static Routing

- Steer traffic to a specific port
 - route add -net 10.30.20.0/24 dev ether1
 - route add -net 10.30.30.0/24 dev ether2
- Works only for smaller networks and simple cases
 - Every router needs to be configured manually
 - Link failures require lots of manual changes
- Still used to specify special cases
 - Edge routers, laptops, VPNs, etc.
 - Tell OSPF how to get to a special subnet
 - Avoid static routes when using OSPF
 - Misconfigured static routes breaks everything

Route Matching

- Routing is done based on the tightest fit
 - Every bit in the net mask must match
 - More bits in netmask => better match
- Example: Destination 10.30.20.6
 - 0.0.0.0/0 loosest (default)
 - 10.0.0/8 less loose
 - 10.30.0.0/16 tighter
 - 10.30.20.0/24 tightest
 - 10.30.10.0/24 does not fit (3rd octet does not match)
 - 10.30.20.8/29 does not fit (5 bits in 4th octet mismatch)

Sidebar: Virtual Private Network (VPN)

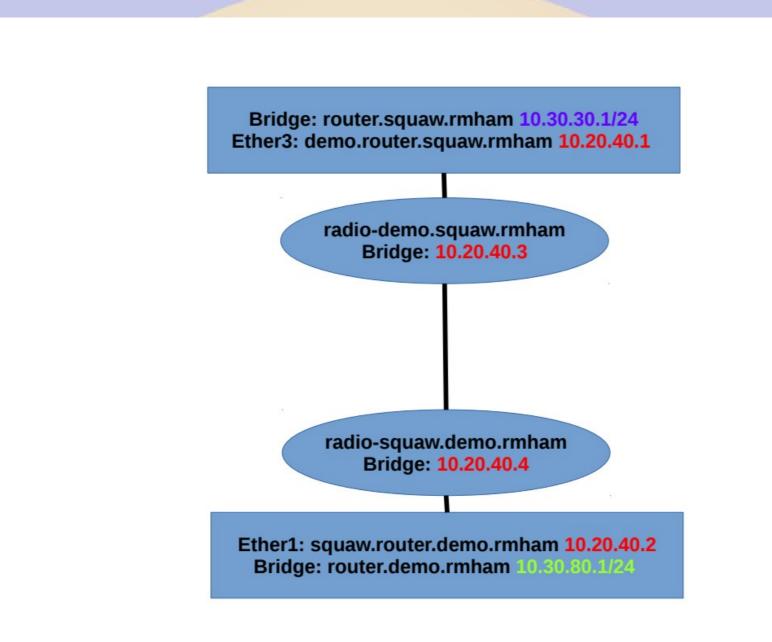
- Encapsulates IP packets to create a virtual tunnel between devices
 - Virtual circuit at the data link (device) layer
- Can be encrypted for privacy
 - Widely used to defeat censorship
- Very useful for remote access
 - Mobile devices
 - Failover
 - Network integration

Connecting to the Network via VPN

- ether1 = DHCP client
 - Configures network connection
 - address 192.168.1.250/24
 - gateway 192.168.1.1
 - DNS 8.8.8.8
 - Add NAT on ether1
- sstp-thor
 - SSTP VPN tunnel
 - Thorodin 172.16.20.1
 - LabDemo 172.16.20.40

Routing via VPN

- LabDemo Routes
 - 0.0.0.0/0 GW 192.168.1.1
 - 192.168.1.0/24 GW 192.168.1.1
 - 10.0.0/8 GW 172.16.20.1
 - 192.168.0.0/16 GW 172.16.20.1
 - 172.16.0.0/16 GW 172.16.20.1
- Only 10.x.x.x, 192.168.x.x and 172.16.x.x are routed via the VPN
 - All other traffic goes direct
 - Alternately ALL could be sent to VPN


Static Route to Squaw

- Subnet for link from Demo to Squaw: 10.20.40.0/24
- On LabDemo
 - ether1 = 10.20.40.2/24
 - default route gateway 10.20.40.1
 - DNS = 10.30.20.6
 - Routing table
 - 10.30.80.0/24: send to bridge1
 - 10.20.28.0/24: send to ether1
 - everything else: send to 10.20.28.1
- Squaw
 - ether3 = 10.20.40.1/24
 - Static route 10.30.106.0/24: send to 10.20.28.2

Building an Point-to-Point RF link

- The link is a subnet
- The RF link is a bridge
 - 10.20.40.3 is the access point
 - 10.20.40.4 is the client
- Devices are set up to bridge traffic
 - Packets are forwarded to the other end
 - Logically the RF part is transparent

Link Configuration

Route Failover

- 10.20.40.4 (Demo site radio)
- From laptop
 - 10.30.80.X you have to go via the gateway
 - 10.20.40.1 is the gateway
 - 10.30.80.X is only reachable via the gateway
- Add a secondary default gateway
 - gateway=10.20.40.1 distance=1 check=ping
 - gateway=10.20.40.2 distance=2
- Secondary gateway is used when RF link fails

Automatic Routing

- Autonomous Systems (AS)
 - A group of routers using the same protocol
 - RMHAM network is an Autonomous System
- Gateway = Router
- Link = Connection between routers

OSPF Routing

- Open Shortest Path First
- Good for centrally administered networks
 - Fast finding the "best" path
 - Knows about all subnets in domain
 - Works well for <1000 subnets
- Routes traffic via "best" path
 - User defined cost per link
 - Does not do load balancing
- Simple to configure

BGP

- Border Gateway Protocol
- Workhorse of the internet
- Works with very large routing tables
 - Transfer between routers with TCP/IP
 - 1,000,000 routes on internet backbone
 - Based on Autonomous System Number
 - Must be unique to be used publicly
- BGP peer routers form a mesh
 - Determines cheapest route

Configuring OSPF

- Router instance
 - Router ID (use bridge IP address)
 - Redistribute routes
 - Default never
 - Connected as type 1
 - Static as type 1
- Networks you want OSPF to manage
 - RMHAM uses 10.0.0/8, 192.168.0.0/16, 172.16.0.0/16
- Interface (link) properties
 - Interface type (point-to-point most robust)
 - weights (default=10)
 - Traffic goes via least expensive cumulative weight

Sidebar: Virtual LAN (VLAN)

- Partition a physical network at ethernet level
 - Send ethernet packets as if physical separation
- Applications
 - Security (e.g. DMZ)
 - Storage Area Network (SAN)

Network Management Tools

- cping
 - Concurrent ping
- SmokePing
 - Graphing ping
- Observium/Nagios/LibreNMS/...
 - Network Management Systems
- RANCID
 - Network device backup

Other Network Tools

- nmap
 - network exploration and port scanner
- WireShark
 - ethernet packet sniffer
- WinBox
 - Torch port
 - RoMON
 - mactelnet

Network Time Protocol (NTP)

- Syncs time over network
 - UDP packets with precise time stamps
 - Corrects for network delay both ways
- Servers are categorized by stratum
 - Stratum 0 knows exact time
 - Atomic clocks like NIST and GPS
 - Stratum 1 slaves time to Stratum 0
 - Best is GPS/GAL, others WWV/DCF/JJY, etc
 - Stratum 2 exchanges network time to Stratum 1
 - millisecond accuracy

Questions?