
The Day the RTCM Took 
Us Back In Time...

Dave Maciorowski

WA1JHK

13 February 2021



Abstract
• Y2K+21.  Yes, it’s a thing.

• A look into time, how computers manage it and convert it, how the 
GPS system delivers it and how Radio Thin Client Modules (RTCMs) 
use it.

• Why a Y2K+21 bug took down all the RTCMs on 1/1/2021 at 00:00:00.  

• Background of the problem and the fix...



Overview
• Review of Receiver Voting

• Why is time important in Receiver Voting

• How the RTCM uses time

• Where the RTCM gets the time

• Y2K+21.  OOPS

• The fix...



Why Voting?  What’s the Problem?



Why Voting?  What’s the Problem?



Why Voting?  What’s the Problem?



Why Voting?  What’s the Problem?



Why Voting?  What’s the Problem?



Why Voting? 
• Benefits

• Improved Coverage, especially for low power radios (handhelds)

• Receiver Redundancy

• Challenges
• Getting each receiver’s signal back to the Voter

• Selecting the “best” quality version of the user’s signal

• Delivering this selected signal to the transmitter

• Complexity

• Tuning!!!  Getting the levels and audio quality right.



A Typical Repeater
• Repeater System with Main Receiver and Transmitter 

TX
Repeater
Controller

RX



A Repeater with Voted Receivers
• Repeater System 

with Voted Receivers

TX
Repeater
Controller

Main
RX #1

RX #2

RX #3

Voting 
Selector



How Does It Work? F

H

0

F

H

0

F

H

0

Main
RX #1

RX #2

RX #3

Voting 
Selector

TX

R
ep

ea
te

r 
C

on
tr

o
lle

r



Getting Audio to the Main Site



RTCMs
• VOTER

• “Voice Observing Time Extension for Radio

• RTCM 
• Radio Thin Client Module

• Interfaces
• Radio Interface

• GPS Interface, Timestamps

• Network Interface

• VOTER Protocol

• Setting Levels, Squelch

• Fallback



RTCMs
• Device to get receiver audio signal back to main site

• Digitizing RX Audio

• RSSI 
• Received

• Ethernet connection
• Internet

• IP over Microwave

• Local Switch/Router

• TX Audio in case we need it

A2D

D2A Microcontroller

Ethernet

GPS Input

RX Audio

TX Audio



RTCMs
• VOTER Protocol

• Transfers audio, timestamps and RSSI from receiver to voter selector

• Sends node configuration information from the host to the receiver

• Packet Types
• GPS Timestamps

• Keep-alive

• Receive Audio

• Transmit Audio

• Host Configuration

• https://github.com/AllStarLink/voter

https://github.com/AllStarLink/voter


Moving the Audio
• Receiver Audio Over Ethernet

0.000, 160 Samples, 20 msec
Main
RX #1

0.020, 160 Samples, 20 msec 0.040, 160 Samples, 20 msec

0.000 Sec 0.020 Sec 0.040 Sec 0.060 SecGPS Timestamp



Moving the Audio
• VOTER Protocol – Receive Audio Packet

00:00:00.021761 IP 10.30.22.225.667 > 10.30.22.240.667: UDP, length 185

Packet Type        : 1, RSSI Plus uLaw Audio

Time Seconds/SeqNum: 1562862567.4875496

Challenge/Response : 374725226/0xCAA2B26A

RSSI (0xFF)        : 255

Audio Samples, Length 160

0x00: 5f5a58575a5d5b5b5e5f606262605e5c

0x10: 5a59585d646671f1e7ea7779fb5f5757

0x20: 564f4e4e504c4d52575a67e8e3ddd8db

0x30: dae4fb696960595252514f4f5152555c

0x40: 5c5b6aff6d6879f3776c6a756b686768

0x50: 66645f5d595c5e5d5b5c63625f606162

0x60: 60616667686c675f63625a57575d5b4e

0x70: 4fe3e9454fdaf775674d57ec624e62e5

0x80: eef9edf7ece9524856684e454d575556

0x90: 5760fded797dded97966f5f55d5e6b64



Getting Time to the RTCMs



Moving the Audio
• Receiver Audio Over Ethernet, Variable Flight Time Latencies

0.000
Main
RX #1

0.020 0.040

0.000RX #2

RX #3

Clock Time

0
.0

0
0

0
.0

2
0

0
.0

4
0

0
.0

6
0

0
.0

8
0

0
.1

0
0

0
.1

2
0

0
.1

4
0

0
.1

6
0

0
.1

8
0

0
.2

0
0

0
.2

2
0

0
.2

4
0

0
.2

6
0

0
.2

8
0

X.xxx X.xxx X.xxx X.xxx X.xxx X.xxx X.xxx X.xxx X.xxx

0.020 0.040 X.xxx X.xxx X.xxx X.xxx X.xxx X.xxx X.xxx X.xxx X.xxxX.xxx

0.000 0.020 0.040 X.xxx X.xxxX.xxxX.xxx X.xxx X.xxx X.xxx X.xxx X.xxxX.xxx



Moving the Audio
• Aligning Sample Buffers

0.000, 160 Samples, 20 msec
Main
RX #1

0.000 Sec 0.020 Sec

0.020, 160 Samples, 20 msec

0.040 Sec

0.040, 160 Samples, 20 msec

0.060 Sec

0.000, 160 Samples, 20 msecRX #2 0.020, 160 Samples, 20 msec 0.040, 160 Samples, 20 msec

0.000, 160 Samples, 20 msecRX #3 0.020, 160 Samples, 20 msec 0.040, 160 Samples, 20 msec

GPS Timestamp

0.220 Sec 0.240 SecClock Time0.200 Sec 0.260 Sec



Y2K Again?
• Y2K happened because time was typically stored as two digits

• “1999” was stored as “99”

• The next year was stored as “00”, meaning “1900”

• OOPS.

• C library time manages time as seconds since 
January 1, 1970 at 00:00:00 UTC

• Is this a problem?

• It will be for 32-bit integers at 03:14:07 UTC on 19 January 2038

• But why did it happen this year?
• Y2K+21?  Yes, it’s a thing.



The Beginning of Time
• Epoch

• Computers use a fixed starting date time to calculate relative offsets

• Different designers use different epochs

• C Library internal time is managed as seconds since 
January 1, 1970 at 00:00:00 UTC

• This relative time can be the cause of issues

• How it’s stored and calculated can be an issue
• Time limitations of 32-bit integers (signed value has only 31 significant bits)

• Unsigned 32-bit DWORDS double the amount of available time

• Thinking forward is sometimes a challenge for developers
• Software lasts forever, but hardware ages and quietly fades away...



GPS Timestamps
• GPS receivers emit NMEA ASCII strings

• Typical Time String
• $GPRMC,194013.00,A,4032.94888,N,10511.83890,W,0.005,,020121,,,D*62

• HHMMSS                                        DDMMYY

• The RTCM only requires the date and time to calculate seconds since epoch



Converting Time
• C Library time routines

• mktime
• Accepts individual time fields (time_t) as input

• Outputs time in seconds since epoch

• On error, it returns -1
• -1 is an unusual time value and ignored in the code!

• GPS-DEBUG: $GPRMC,201833,A,4004.3350,N,10521.2352,W,000.0,023.1,050121,008.8,E*6C

• HHMMSS                                        DDMMYY

• GPS-DEBUG: mon: 0, gps_time: -1, ctime: Thu Jan  1 00:00:0/ 1970



The Fix
#define SECONDS_EPOCH_TO_1121 1609459200  // seconds 1/1/1970 until 1/1/2021 0:0:0

#define SECONDS_PER_DAY 86400             // 60 * 60 * 24

#define SECONDS_PER_YEAR 31536000         // SECONDS_PER_DAY * 365

DWORD   total_seconds;

// days before current month in current year

static ROM int normal_year[] = {0,31,59,90,120,151,181,212,243,273,304,334};

// SECONDS_EPOCH_TO_1121 is seconds from 1/1/70 0:0:0 up to 1/1/21 0:0:0

total_seconds = SECONDS_EPOCH_TO_1121;

// seconds elapsed current day since midnight

total_seconds = total_seconds + ((DWORD)tm->tm_sec + ((DWORD)tm->tm_min * 60) + ((DWORD)tm->tm_hour * 3600));

// seconds elapsed since 1st of month up to current day

total_seconds = total_seconds + (((DWORD)tm->tm_mday - 1) * SECONDS_PER_DAY);

// seconds elapsed since 1st of year up to current month

total_seconds = total_seconds + (normal_year[tm->tm_mon - 1] * SECONDS_PER_DAY);

// seconds elapsed since 1st of year up to current month

total_seconds = total_seconds + ((tm->tm_year - 21) * SECONDS_PER_YEAR);

// seconds for leap day added for March thru December in leap year

if (((tm->tm_year % 4) == 0) & (tm->tm_mon > 2))

{

total_seconds = total_seconds + SECONDS_PER_DAY;

}

// seconds for extra leap days for all past years

total_seconds = total_seconds + (((tm->tm_year - 21) / 4) * SECONDS_PER_DAY);



Fixed!
• Confirmation of the result

• GPS-DEBUG: $GPRMC,134238,A,4004.3361,N,10521.2338,W,000.0,322.5,080121,008.8,E*6D

• HHMMSS                                        DDMMYY

• GPS-DEBUG: mon: 1, gps_time: 1610113358, ctime: Fri Jan  8 13:42:38 2021

• Validating the Solution
• Compare Against References available on the web

• References
• https://www.onlineconversion.com/days_between_advanced.htm

• https://www.timeanddate.com/date/durationresult.html
• This one had a leap year bug, now fixed

https://www.onlineconversion.com/days_between_advanced.htm
https://www.timeanddate.com/date/durationresult.html


Questions?



References
• https://wiki.allstarlink.org/wiki/Main_Page

• https://wiki.allstarlink.org/wiki/RTCM_Client

• https://github.com/AllStarLink/voter

https://wiki.allstarlink.org/wiki/Main_Page
https://wiki.allstarlink.org/wiki/RTCM_Client
https://github.com/AllStarLink/voter


Backup



Calculation Considerations
• Is there enough time?

• Microcontrollers have limited execution time available
• The VOTER uses a 16-bit microcontroller

• Application requirements can limit available time
• A VOTER must collect and send 160 samples every 20 milliseconds



Overview – Some Definitions
• VOTER

• The first hardware module
• Network Protocol
• VOTER = “Voice Observing Time Extension for Radio”

• RTCM
• RTCM = Radio Thin Client Module, a device previously manufactured by 

Micro-Node International

• RoIP
• Radio Over IP, communicating audio and control signals (COR, PTT) across an 

Ethernet connection.

• RSSI
• Received Signal Strength Indicator, how strong are you into that receiver?


