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Abstract
• Y2K+21.  Yes, it’s a thing.

• A look into time, how computers manage it and convert it, how the 
GPS system delivers it and how Radio Thin Client Modules (RTCMs) 
use it.

• Why a Y2K+21 bug took down all the RTCMs on 1/1/2021 at 00:00:00.  

• Background of the problem and the fix...



Overview
• Review of Receiver Voting

• Why is time important in Receiver Voting

• How the RTCM uses time

• Where the RTCM gets the time

• Y2K+21.  OOPS

• The fix...
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Why Voting? 
• Benefits

• Improved Coverage, especially for low power radios (handhelds)

• Receiver Redundancy

• Challenges
• Getting each receiver’s signal back to the Voter

• Selecting the “best” quality version of the user’s signal

• Delivering this selected signal to the transmitter

• Complexity

• Tuning!!!  Getting the levels and audio quality right.



A Typical Repeater
• Repeater System with Main Receiver and Transmitter 
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A Repeater with Voted Receivers
• Repeater System 

with Voted Receivers

TX
Repeater
Controller

Main
RX #1

RX #2

RX #3

Voting 
Selector



How Does It Work? F
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Getting Audio to the Main Site



RTCMs
• VOTER

• “Voice Observing Time Extension for Radio

• RTCM 
• Radio Thin Client Module

• Interfaces
• Radio Interface

• GPS Interface, Timestamps

• Network Interface

• VOTER Protocol

• Setting Levels, Squelch

• Fallback



RTCMs
• Device to get receiver audio signal back to main site

• Digitizing RX Audio

• RSSI 
• Received

• Ethernet connection
• Internet

• IP over Microwave

• Local Switch/Router

• TX Audio in case we need it

A2D

D2A Microcontroller

Ethernet

GPS Input

RX Audio

TX Audio



RTCMs
• VOTER Protocol

• Transfers audio, timestamps and RSSI from receiver to voter selector

• Sends node configuration information from the host to the receiver

• Packet Types
• GPS Timestamps

• Keep-alive

• Receive Audio

• Transmit Audio

• Host Configuration

• https://github.com/AllStarLink/voter

https://github.com/AllStarLink/voter


Moving the Audio
• Receiver Audio Over Ethernet

0.000, 160 Samples, 20 msec
Main
RX #1

0.020, 160 Samples, 20 msec 0.040, 160 Samples, 20 msec

0.000 Sec 0.020 Sec 0.040 Sec 0.060 SecGPS Timestamp



Moving the Audio
• VOTER Protocol – Receive Audio Packet

00:00:00.021761 IP 10.30.22.225.667 > 10.30.22.240.667: UDP, length 185

Packet Type        : 1, RSSI Plus uLaw Audio

Time Seconds/SeqNum: 1562862567.4875496

Challenge/Response : 374725226/0xCAA2B26A

RSSI (0xFF)        : 255

Audio Samples, Length 160

0x00: 5f5a58575a5d5b5b5e5f606262605e5c

0x10: 5a59585d646671f1e7ea7779fb5f5757

0x20: 564f4e4e504c4d52575a67e8e3ddd8db

0x30: dae4fb696960595252514f4f5152555c

0x40: 5c5b6aff6d6879f3776c6a756b686768

0x50: 66645f5d595c5e5d5b5c63625f606162

0x60: 60616667686c675f63625a57575d5b4e

0x70: 4fe3e9454fdaf775674d57ec624e62e5

0x80: eef9edf7ece9524856684e454d575556

0x90: 5760fded797dded97966f5f55d5e6b64



Getting Time to the RTCMs



Moving the Audio
• Receiver Audio Over Ethernet, Variable Flight Time Latencies
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Moving the Audio
• Aligning Sample Buffers

0.000, 160 Samples, 20 msec
Main
RX #1

0.000 Sec 0.020 Sec

0.020, 160 Samples, 20 msec

0.040 Sec

0.040, 160 Samples, 20 msec

0.060 Sec

0.000, 160 Samples, 20 msecRX #2 0.020, 160 Samples, 20 msec 0.040, 160 Samples, 20 msec

0.000, 160 Samples, 20 msecRX #3 0.020, 160 Samples, 20 msec 0.040, 160 Samples, 20 msec

GPS Timestamp

0.220 Sec 0.240 SecClock Time0.200 Sec 0.260 Sec



Y2K Again?
• Y2K happened because time was typically stored as two digits

• “1999” was stored as “99”

• The next year was stored as “00”, meaning “1900”

• OOPS.

• C library time manages time as seconds since 
January 1, 1970 at 00:00:00 UTC

• Is this a problem?

• It will be for 32-bit integers at 03:14:07 UTC on 19 January 2038

• But why did it happen this year?
• Y2K+21?  Yes, it’s a thing.



The Beginning of Time
• Epoch

• Computers use a fixed starting date time to calculate relative offsets

• Different designers use different epochs

• C Library internal time is managed as seconds since 
January 1, 1970 at 00:00:00 UTC

• This relative time can be the cause of issues

• How it’s stored and calculated can be an issue
• Time limitations of 32-bit integers (signed value has only 31 significant bits)

• Unsigned 32-bit DWORDS double the amount of available time

• Thinking forward is sometimes a challenge for developers
• Software lasts forever, but hardware ages and quietly fades away...



GPS Timestamps
• GPS receivers emit NMEA ASCII strings

• Typical Time String
• $GPRMC,194013.00,A,4032.94888,N,10511.83890,W,0.005,,020121,,,D*62

• HHMMSS                                        DDMMYY

• The RTCM only requires the date and time to calculate seconds since epoch



Converting Time
• C Library time routines

• mktime
• Accepts individual time fields (time_t) as input

• Outputs time in seconds since epoch

• On error, it returns -1
• -1 is an unusual time value and ignored in the code!

• GPS-DEBUG: $GPRMC,201833,A,4004.3350,N,10521.2352,W,000.0,023.1,050121,008.8,E*6C

• HHMMSS                                        DDMMYY

• GPS-DEBUG: mon: 0, gps_time: -1, ctime: Thu Jan  1 00:00:0/ 1970



The Fix
#define SECONDS_EPOCH_TO_1121 1609459200  // seconds 1/1/1970 until 1/1/2021 0:0:0

#define SECONDS_PER_DAY 86400             // 60 * 60 * 24

#define SECONDS_PER_YEAR 31536000         // SECONDS_PER_DAY * 365

DWORD   total_seconds;

// days before current month in current year

static ROM int normal_year[] = {0,31,59,90,120,151,181,212,243,273,304,334};

// SECONDS_EPOCH_TO_1121 is seconds from 1/1/70 0:0:0 up to 1/1/21 0:0:0

total_seconds = SECONDS_EPOCH_TO_1121;

// seconds elapsed current day since midnight

total_seconds = total_seconds + ((DWORD)tm->tm_sec + ((DWORD)tm->tm_min * 60) + ((DWORD)tm->tm_hour * 3600));

// seconds elapsed since 1st of month up to current day

total_seconds = total_seconds + (((DWORD)tm->tm_mday - 1) * SECONDS_PER_DAY);

// seconds elapsed since 1st of year up to current month

total_seconds = total_seconds + (normal_year[tm->tm_mon - 1] * SECONDS_PER_DAY);

// seconds elapsed since 1st of year up to current month

total_seconds = total_seconds + ((tm->tm_year - 21) * SECONDS_PER_YEAR);

// seconds for leap day added for March thru December in leap year

if (((tm->tm_year % 4) == 0) & (tm->tm_mon > 2))

{

total_seconds = total_seconds + SECONDS_PER_DAY;

}

// seconds for extra leap days for all past years

total_seconds = total_seconds + (((tm->tm_year - 21) / 4) * SECONDS_PER_DAY);



Fixed!
• Confirmation of the result

• GPS-DEBUG: $GPRMC,134238,A,4004.3361,N,10521.2338,W,000.0,322.5,080121,008.8,E*6D

• HHMMSS                                        DDMMYY

• GPS-DEBUG: mon: 1, gps_time: 1610113358, ctime: Fri Jan  8 13:42:38 2021

• Validating the Solution
• Compare Against References available on the web

• References
• https://www.onlineconversion.com/days_between_advanced.htm

• https://www.timeanddate.com/date/durationresult.html
• This one had a leap year bug, now fixed

https://www.onlineconversion.com/days_between_advanced.htm
https://www.timeanddate.com/date/durationresult.html


Questions?



References
• https://wiki.allstarlink.org/wiki/Main_Page

• https://wiki.allstarlink.org/wiki/RTCM_Client

• https://github.com/AllStarLink/voter

https://wiki.allstarlink.org/wiki/Main_Page
https://wiki.allstarlink.org/wiki/RTCM_Client
https://github.com/AllStarLink/voter


Backup



Calculation Considerations
• Is there enough time?

• Microcontrollers have limited execution time available
• The VOTER uses a 16-bit microcontroller

• Application requirements can limit available time
• A VOTER must collect and send 160 samples every 20 milliseconds



Overview – Some Definitions
• VOTER

• The first hardware module
• Network Protocol
• VOTER = “Voice Observing Time Extension for Radio”

• RTCM
• RTCM = Radio Thin Client Module, a device previously manufactured by 

Micro-Node International

• RoIP
• Radio Over IP, communicating audio and control signals (COR, PTT) across an 

Ethernet connection.

• RSSI
• Received Signal Strength Indicator, how strong are you into that receiver?


