
SDR

Ben Matthews

NerdFest 2022

February 2022

Warning! Contains Math

Disclaimer

• I’m going to try to show quite a bit of signal

processing in half an hour

• So, it’s going to be pretty hand-wavey

• We might lose a factor of 2 or so in several

places
• But that’s what automatic gain is for ;-)

• The point is to understand how SDR works, not

get the details right

• I’m not really a math person anyway

Definitions

• Radio: Device for converting magic to data

• Magic: Something I don’t care to explain

• SDR: Software defined radio
• Make the computer do the magic

• Imaginary number: sqrt(-1) (aka magic)

Radio for the Magician Computer

Nerd

Contents: Magic Smoke

A2D

SDR

Contents: Magic Smoke

A2D

X

SDR

• Connect the antenna directly to the A2D
• Ok, fine, ish. Maybe we want an amplifier too

• Need to sample the RF signal at twice the

frequency of interest (or so says Nyquist)

• Fast A2D is expensive, so we’ll allow a little

magic – a mixer

• Let’s only talk about receive for now. SDR

Transmitters do exist too.

Real world aside: WebSDR

• You can buy an SDR that’ll capture the entire HF
spectrum

• Put it on the web and let people process as they
see fit

• KiwiSDR - ~$300

• Listen to multiple stations at once (or do digital
decoding or whatever)

• Web based UI. Some are even publicly available
• Rx.kiwisdr.com

SDR

A2D

VFO

Sounds cool, how?

RTLSDR

• Chip designed to capture European Digital TV

• Can be tuned *way* out of band
• ~DC to 1GHz

• Let’s assume you have a Linux computer (Pi is

fine). Windows people are on their own

• Since it’s really a TV tuner, we need to disable

the TV drivers…

RTLSDR

Put the following in /etc/modprobe.d/blacklist-

rtlsdr.conf and reboot:

blacklist rtl2832

blacklist dvb_usb_rtl28xxu

blacklist rtl2832_sdr

blacklist rtl8xxxu

RTLSDR

• Let’s install some software:

• apt-get install rtlsdr-tools soapysdr-tools

soapysdr-module-all

• For those who just want a reciever, I like “gqrx”

• For those of you not afraid of a little math, I’ll be

using the “Julia” programming language, but it’s

just math. Use whatever. Let’s write a receiver!

…but first: Trigonometry

• Signal = sin(2*pi*f*t)
• f = frequency

• t = time

• sin(a)sin(b)=1/2(cos(a-b) – cos(a+b))
• We’ll use this for implementing our tuner

• sin(x) = cos(x+pi/2)

… but Radio is in Frequencies,

right?
• If you insist. Fourier says we can represent any

signal as a sum of (probably infinitely many) sine
waves

• We can convert between the time domain
(signal(time)) and the frequency domain
(signal(frequency)) using the Fourier transform

• Fourier transforms are magic. Refer to your
favorite signals textbook. I’m just going to use
FFTW

• “Fastest Fourier Transform in the West” (software library)
• Yes, there’s an FFTE. Computer people are silly.

Visual Learners

Increase the Frequency?

Frequency Domain

Mixing a f=10 and f=1 signals

(frequency domain)

Back to SDR: Let’s capture some

samples
rx_sdr -f 144000000 -d driver=remote -s 6144000 -n
61440000 test_wide.iq

• Give me samples centered around 144MHz

• Sample at ~6MHz

• Give me 61440000 samples (10 seconds)

• Default format (8 bit/sample, complex, interleaved
I/Q)

I/Q?

• Signal = I*cos(2*pi*f*t)+Q*sin(2*pi*f*t)

• I’m told this makes things easier

• Explaining why is probably too much for this

talk

• Let’s just map our samples into complex floats

and not think about it too much for now.

What did our SDR give us exactly?

• Integer samples

• High bit is a sign

• Everything is “baseband”. Basically, centered
around our specified center frequency. f=0 is
our center or “dial” frequency

• This means we have negative frequencies.. Just go with it – the
math works anyway.

• We need to keep track of dial frequency/sample
rate ourselves

Let’s read in our samples

A first look at our data

(frequency domain)

Tuning to the frequency of interest

• Compute a signal with a frequency equal to the

amount we want to shift
• That is, the frequency difference between our dial frequency

and the offset of the signal we’re interested in

• Remember: We’re working in I/Q

• Multiply our signal by this intermediate

frequency.

Tuning to the frequency of interest

Performance: Decimation

• We have a *lot* of data. 6 Msamples/sec

• We only need to represent ~25 KHz and the

signal we’re interested in is centered at zero

• To represent 25KHz, we need ~2x that. Let’s

keep 48KHz since audio libraries like to work at

48KHz sample rates

• So, we can throw away most of the data without

any important loss
• Unless we want to retune to a different part of the signal

Decimation

Filtering

• We want what radio folks call a lowpass filter.

Half our signal is on either side of zero, so a

low pass about zero is appropriate

• You could also think of it as a bandpass around

our signal

• Lots of ways to do this, but let’s talk about a FIR

filter (Finite Impulse Response)

Lowpass Filter

Ifft(lowpass)

Ifft(lowpass) (higher precision)

(yes, I cheated and looked it up)

Can I get that as a formula?

Tap[i] = Sin(2*pi*fc*i)/i

(fc = cutoff frequency)

• We just compute some taps and multiply them
by our signal

• More taps = shaper cutoff and better
attenuation, but also more computation

• There are various ways of estimating how many taps are
needed for particular filter properties. I’m just going to cheat
and let the library worry about it.

Filtered signal (frequency domain)

Demodulation

• For AM, we’re pretty much done. Send the

samples to the sound card.

• For SSB, we’d use a slightly different filter to

reject one of the sidebands

• For FM, we need to look at how the

frequency/phase changes between samples

• For digital, well, there are lots of schemes.

Other things we’re not talking about

• Gain/Volume control

• Extra DSP to improve audio

• Squelch

Why would I want to do this?

• Play with new modes

• Cheaper than buying a radio for each
protocol/mode

• Decode something interesting

• Decode all the signals in a band with one
antenna/radio

• Cheaper than building hardware to do it (in
general)

• This talk was motivated by TDOA

• See what’s out there on the airwaves

Application: TDOA

• If we know exactly when a signal is received at
multiple sites, we can figure out where the
transmitter is relative to those sites

• But we’d need to have perfectly synchronized
clocks at each site

• Can we synchronize time based on when a
known signal is received at known locations?

• I think yes, but this is a work in progress

But I’m not a programmer?

• GNU Radio has a flow chart based

“programming” environment with “blocks” that

do all these things that can be wired together.

• It does hide the details a little, but you can still

demodulate pretty much anything

• https://www.gnuradio.org/

https://www.gnuradio.org/

Questions?

ben@kc2vjw.com

References/Places to Look for More

Similar talk by HA7ILM: https://www.youtube.com/watch?v=-
QERqK1XAy0

Free book from Mathworks:
https://www.mathworks.com/campaigns/offers/download-rtl-sdr-
ebook.html

PySDR Guide (useful even if you're not using Python):
https://pysdr.org/index.html

Programming environment used to generate some of these slides:
https://jupyter.org/ https://julialang.org/

More about GNURadio: https://wiki.gnuradio.org/index.php?title=Tutorials

Interesting SDR related news: https://www.rtl-sdr.com/

https://www.youtube.com/watch?v=-QERqK1XAy0
https://www.mathworks.com/campaigns/offers/download-rtl-sdr-ebook.html
https://pysdr.org/index.html
https://jupyter.org/
https://julialang.org/
https://wiki.gnuradio.org/index.php?title=Tutorials
https://www.rtl-sdr.com/

