SDR

Ben Matthews

NerdFest 2022
February 2022

A Warning! Contains Math



Disclaimer

I'm going to try to show quite a bit of signal
processing in half an hour

So, it's going to be pretty hand-wavey

We might lose a factor of 2 or so in several

places
But that’s what automatic gain is for ;-)

The point is to understand how SDR works, not
get the detalls right

I'm not really a math person anyway



Definitions

Radio: Device for converting magic to data
Magic: Something | don’t care to explain
SDR: Software defined radio

Make the computer do the magic

Imaginary number: sgrt(-1) (aka magic)



Radio for the Magietan Computer

Nerd
st dmE
I | S

Contents: Magic Smoke



SDR

—_—
Conted®: Ma moke

A2D




SDR

Connect the antenna directly to the A2D

Ok, fine, ish. Maybe we want an amplifier too

Need to sample the RF signal at twice the
frequency of interest (or so says Nyquist)

Fast A2D is expensive, so we'll allow a little
magic — a mixer

Let’s only talk about receive for now. SDR
Transmitters do exist too.



Real world aside: WebSDR

You can buy an SDR that’ll capture the entire HF
spectrum

Put it on the web and let people process as they
see fit

KiwiSDR - ~$300

Listen to multiple stations at once (or do digital
decoding or whatever)

Web based Ul. Some are even publicly available

Rx.kiwisdr.com






Sounds cool, how?



a4, Amazon.com: NESDR SMArTee X -

< C O B8 https://www.amazon.com/NooElec-NESDR-SMArTee-Bundle-R820T2-Based/dp/B079C4S2BT/ref=si o ~

— All BestSellers Amazon Basics New Releases Customer Service Today's Deals Prime ~ Books Music

Black is remarkable

Computers Laptops Desktops Monitors Tablets Computer Accessories PC Components PC Gaming Deals

- frr iy 4,256
‘ Plugable USB Audio Adapter with 3.5mm... $9.95 _prime
’ ri

Electronics > Computers & Accessories > Computer Components * External Components > External TV Tuners

NESDR SMArTee v2 Bundle -
Premium RTL-SDR w/Integrated
Bias Tee, Aluminum Enclosure,
0.5PPM TCXO, SMA Input,
Antenna Base & 3 Antennas.
RTL2832U & R820T2-Based
Software Defined Radio (SDR)

Brand: NooElec
S frdy v 436ratings | 24 answered questions

o

%

it A1\ Y Y

Ri—

41

& FREE Returns v

Roll over image to zoom in

Get $60 off instantly: Pay $0.00 $434-95 upon approval
for the Amazon Prime Store Card. No annual fee.

Sponsored &

41
& FREE Returns ~

FREE delivery February 21 -
March 1

Or fastest delivery February 15
-24

© select delivery location

Quantity: 1 v
Add to Cart

Buy Now

Secure transaction



RTLSDR

Chip designed to capture European Digital TV

Can be tuned *way* out of band
~DC to 1GHz

Let's assume you have a Linux computer (Pi is
fine). Windows people are on their own

Since it’s really a TV tuner, we need to disable
the TV drivers...



RTLSDR

Put the following in /etc/modprobe.d/blacklist-
rtlsdr.conf and reboot:

acklist rt|2832
acklist dvb_usb_rtl28xxu
acklist rtl2832 sdr

acklist rtI8xxxu

O O 0O O




Let's

RTLSDR

Install some software:

apt-get install rtlsdr-tools soapysdr-tools
soapysdr-module-all

Fort
Fort

nose who just want a reciever, | like “ggrx”

nose of you not afraid of a little math, I'll be

using the “Julia” programming language, but it’s
just math. Use whatever. Let's write a receiver!



...but first: Trigonometry

e Signal = sin(2*pi*f*t)
e f=frequency
* t=time

* sin(a)sin(b)=1/2(cos(a-b) — cos(a+b))

 We'll use this for implementing our tuner

* sin(x) = cos(x+pi/2)



. but Radio is in Frequencies,
right?

If you Insist. Fourier says we can represent any
signhal as a sum of (probably infinitely many) sine
waves

We can convert between the time domain
(signal(time)) and the frequency domain
(signal(frequency)) using the Fourier transform

Fourier transforms are magic. Refer to your
favorite signals textbook. I'm just going to use
FFTW

“Fastest Fourier Transform in the West” (software library)
Yes, there’s an FFTE. Computer people are silly.



Ual Leal

In [15]: )| using PyPlot, FFTW, DSP

In [39]: M samples = zeros(10000)
frequency = 1
for £t in 1:10000
samples[t]=(2*pi) *frequency*1/10000*t
end
sine = sin. (samples)
scatter (samples, sine)

1.00 -

0.75 -

0.50 -

0.25 -

0.00 -

—0.25 -

—0.50 -

—0.75 -

—1.00 -

Out[39]: PyObject <matplotlib.collections.PathCollection object at 0x7fdcB8ce932b0>




Increase the Frequency?

In [51]: M wusing PyPlot, FFTW, DSP

In [43]: M samples = zeros (10000)
frequency = 10
for t in 1:10000
samples[t]=(2*pi) *frequency*1/10000*t
end
Sine = sin. (samples)
scatter (samples, sine)

1.00 A

0.75 1

0.50 A

0.25 1

0.00 A

—0.25 A

—0.50 A

=0.75 4

—1.00 A

0 10 20 30 40 50 60

Out[43]: PyObject <matplotlib.collections.PathCollection object at 0x7fdc8cdea7f0>



In [55]: M plot(fft(sine))
ax = gcaf()
ax[:set x1im] ([0, 100])

0 20 40 60 80 100

/home/matthb2/.julia/conda/3/1ib/python3.9/site-packages/matplotlib/cbook/ init .py:1298:
ComplexWarning: Casting complex values to real discards the imaginary part
return np.asarray(x, float)




Mixing a f=10 and f=1 signals
(frequency domain)

In [60]: M ften sin. (samples*10)
fone 3in. (samples*1)
mixed = ften .* fone
plot (abs. (fft (mixed)))
ax = gcaf()
ax[:set x1im] ([0, 15])

2500 -

2000 -

1500 -

1000 A

500 A

oo 4
H
(=]
H
N
H
s

0 2 - 6

out[e0]: (0.0, 15.0)



Back to SDR: Let’'s capture some

samples

rx_sdr -f 144000000 -d driver=remote -s 6144000 -n
61440000 test wide.iq

* Give me samples centered around 144MHz

« Sample at ~6MHz

* Give me 61440000 samples (10 seconds)

« Default format (8 bit/sample, complex, interleaved

Q)



1/1Q?

Signal = I*cos(2*pi*f*t)+Q*sin(2*pi*f*t)
I'm told this makes things easier

Explaining why is probably too much for this
talk

Let’s just map our samples into complex floats
and not think about it too much for now.



What did our SDR give us exactly?

Integer samples
High bit Is a sign

Everything is “baseband”. Basically, centered
around our specified center frequency. f=0 Is
our center or “dial” frequency

This means we have negative frequencies.. Just go with it — the
math works anyway.

We need to keep track of dial frequency/sample
rate ourselves



struct UInt8Sample
I::UInt8
Q::UInt8

end

out[35]:

samplerate = 6144000
centerfreq = 144000000
channeldial = 146540000

146540000

[241: M

out[24]:

[(251: M

file = "test wide.iq"

sz = stat(file) .size+2

samples = Array{UInt8Sample} (undef, sz)
fd = open(file, "zr")

read! (fd, samples)

close (fd)

length (samples)

61440000

cmplxsamples = Array{Complex{Float32}} (undef, length (samples))
for i in l:length (samples)

cmplxsamples[i] = samples[i].I/(128.0)-1.0 + im* (samples[i].Q/(128.0)-1.0)
end




A first look at our data
(frequency domain)

In [33]: M plot (20 .*logl0. (abs. (fftshift (fft((cmplxsamples))))))

120 A

100 -

80 A

60 -

40 -

20 A

0_

_20 -

_40 —

le7

Out[33]: l-element Vector{PyCall.PyObject}:
PyOCbject <matplotlib.lines.Line2D object at 0x7f580fe%90e50>



Tuning to the frequency of interest

 Compute a signal with a frequency equal to the

amount we want to shift

That is, the frequency difference between our dial frequency
and the offset of the signal we’re interested in

Remember: We’re working in 1/Q

* Multiply our signal by this intermediate
frequency.



Tuning to the frequency of Interest

B S e

_ /i S

In [41]: M shift step = ((channeldial-centerfreq)/samplerate)*2*pi #shift per sample

1]: 2.5975408008196856

In [46]: M shift = shift step

for i in l:length(cmplxsamples)
shifted[i] = cmplxsamples[i] * (sin(shift) + cos(shift) *im)
shift += shift step
while shift > 2*pi

shift -= 2*pi

end

end

0

Out[46]: 0

In [47]: M plot(20 .*loglO.(abs.(fftshift(£ft((shifted))))))

120 -

100 -

80

60

40

20 A

—-20 1

_40 -

le7



Performance: Decimation

We have a *lot* of data. 6 Msamples/sec

We only need to represent ~25 KHz and the
signal we're interested in is centered at zero

To represent 25KHz, we need ~2x that. Let’s
keep 48KHz since audio libraries like to work at
48KHz sample rates

So, we can throw away most of the data without
any important loss

Unless we want to retune to a different part of the signal



Decimation

In [20]: W #This happens to work out evenly. Could be more complicated
decimate factor = samplerate=48000
decimatedsamples = Array{Complex{Float32}} (undef, length (shifted)+decimate factor)
i=1
j=1

while i<length (shifted)
decimatedsamples[j] = shifted[i]
i+=decimate factor
j+=1

end

length (decimatedsamples)

out[20]: 480000

In [21]: M plot(20 .*logl0. (abs. (fftshift (fft ((decimatedsamples)))})))

80 A

60 -

40 A

20 1

—20 T

-40 1

L L) T T T
0 100000 200000 300000 400000 500000

Out[2l]: 1-element Vector{PyCall.PyObject}:
PyObject <matplotlib.lines.Line2D object at 0x7fdld4abfad30>



Filtering

* We want what radio folks call a lowpass filter.
Half our signal is on either side of zero, so a
low pass about zero Is appropriate

* You could also think of it as a bandpass around
our signal

* Lots of ways to do this, but let's talk about a FIR
filter (Finite Impulse Response)



In [79]:

[

times = zeros (10000)
rectsamples = zeros (10000)
#this is often called a rectangle function
for t in 1:10000
times[t]=((2%pi)*1*1/10000*t)-pi #subtract pi to shift us to both sides of zero
if abs(times[t]) > pi/2
rectsamples[t] = 0
end
if abs(times[t]) == pi/2
rectsamples[t] = .5
end
if abs(times[t]) < pi/2
rectsamples[t] = 1
end
end
scatter (times, rectsamples)

1.0 1 L]




In [85]: M plot (fft(real. (rectsamples)))
ax = gca() #I'm cheating here and only showing you the low freguency components
ax[:set x1im] ([0, 20])

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

/home/matthb2/.julia/conda/3/1ib/python3.9/site-packages/matplotlib/cbook/ init .py:1298:
ComplexWarning: Casting complex values to real discards the imaginary part
return np.asarray(x, float)




Ifft(lowpass) (higher precision)
yes, | cheated and looked it up

In

[807:

-

out [8¢

e

M times = zeros(10000)

rectsamples = zeros (10000)
for £t in 1:10000

times[t]=((2*pi)*1*1/10000*t)-pi #subtract pi to shift us to both side
end

6]
8]
s}
%]
m
5
Q

rectsamples = sinc. (times)
scatter (times, rectsamples)

1.0

0.8 1

0.6

0.4 1

0.2 1

0.0

—0.2

PyObject <matplotlib.collections.PathCollection object at 0x7fdc72eed7f0>



Can | get that as a formula?

Tap[i] = Sin(2*pi*fc*i)/i
(fc = cutoff frequency)

* We just compute some taps and multiply them
by our signal

* More taps = shaper cutoff and better

attenuation, but also more computation

There are various ways of estimating how many taps are

needed for particular filter properties. I’'m just going to cheat
and let the library worry about it.



Filtered signal (frequency domain)

In [136]: M plot(20 .*loglO. (abs. (fftshift (£ft ({out))))))

75 A

50 A

25 A

—-25 4

=50 A

—75 -

—-100 A

le7

Out[1l36]: l-element Vector{PyCall.PyObject}:
PyObject <matplotlib.lines.LineZD object at 0x7fe3f4£f36040>



Demodulation

For AM, we're pretty much done. Send the
samples to the sound card.

For SSB, we'd use a slightly different filter to
reject one of the sidebands

For FM, we need to look at how the
frequency/phase changes between samples

For digital, well, there are lots of schemes.



Other things we're not talking about

 Gain/Volume control
« Extra DSP to improve audio
e Squelch



Why would | want to do this?

Play with new modes

Cheaper than buying a radio for each
protocol/mode

Decode something interesting

Decode all the signals in a band with one
antenna/radio

Cheaper than building hardware to do it (in
general)

This talk was motivated by TDOA
See what’'s out there on the airwaves



Application: TDOA

If we know exactly when a signal Is received at
multiple sites, we can figure out where the
transmitter is relative to those sites

But we'd need to have perfectly synchronized
clocks at each site

Can we synchronize time based on when a
known signal is received at known locations?

| think yes, but this Is a work in progress



But I'm not a programmer?

 GNU Radio has a flow chart based
‘programming” environment with “blocks” that
do all these things that can be wired together.

* |t does hide the details a little, but you can still
demodulate pretty much anything

e https://www.gnuradio.org/



https://www.gnuradio.org/

Questions?

ben@kc2vjw.com



References/Places to Look for More

Similar talk by HA7ILM: https://www.youtube.com/watch?v=-
QERgK1XAy0

Free book from Mathworks:
https://www.mathworks.com/campaigns/offers/download-rtl-sdr-
ebook.html

PySDR Guide (useful even if you're not using Python):
https://pysdr.org/index.html

Programming environment used to generate some of these slides:
https://Jupyter.org/ https://julialang.org/

More about GNURadio: https://wiki.gnuradio.org/index.php?title=Tutorlals

Interesting SDR related news: https://www.rtl-sdr.com/



https://www.youtube.com/watch?v=-QERqK1XAy0
https://www.mathworks.com/campaigns/offers/download-rtl-sdr-ebook.html
https://pysdr.org/index.html
https://jupyter.org/
https://julialang.org/
https://wiki.gnuradio.org/index.php?title=Tutorials
https://www.rtl-sdr.com/

