# EDGE OF SPACE SCIENCES

May 2022



## EDGE OF SPACE SCIENCES (EOSS)

- Edge of Space Sciences is a Denver, Colorado based non-profit organization that promotes science and education.
- Formed in 1990 with the mission of promoting science and education through high altitude balloons and amateur radio.
- Payloads to above 99% of Earth's atmosphere "The poor man's space program".
- Directly or indirectly involved with 75,000+ students and 55 schools.
- 15-20 balloon flights per year supporting Colorado Space Grant Consortium and STEM school programs of all ages
- 324 launches <u>AND</u> 324 recoveries!







Coordination with FAA and Denver Air Traffic Control (Part-101 Waiver)



~90 Minute Ascent

One of Six FAA

**Approved Locations** 

80-100k Feet

POP

## LAUNCH SITE

ЛПЛ



Parachute

~45 Minute Descent

**Tracking Teams**  Locate Payloads Identify Landowner Obtain Landowner Permission to Access





## HAM RADIO IS INTEGRAL

Amateur Radio Usage:
UHF (70cm) for voice
VHF (2m) APRS for telemetry

## **Ground Station:**

- Analog and DMR radio comms
- SDR-based APRS system
- APRS igate
- FAA coordination (APRS data push)



## **Flight String**

- Redundant APRS beacons
- ADS-B Beacon (if available)

## **Tracking Teams**

- Analog and DMR radio comms
- SDR-based APRS system
- Some have APRS igate









## STRING UP THE FLIGHT LINE









LAUNCH

Balloon -

RELEASE - cutdown system Parachute TOP APRS beacon

Customer payloads



BOTTOM APRS beacon



## **TRACKING TEAMS**

- Typically 5-7 vehicles a team in each vehicle
- Pre-positioned down range to track and recover payloads
- Leverage amateur radio to coordinate and communicate
- Most teams use SDR tracking system
- Will transmit cut-down to balloon if necessary



![](_page_10_Picture_0.jpeg)

## RECOVERY

![](_page_10_Picture_2.jpeg)

# INTERMISSION

![](_page_12_Picture_0.jpeg)

### RELEASE

- Custom designed release mechanism, bluetooth linked to TOP
- Placed between parachute and latex balloon
- Will release balloon from flight string upon command

### TOP

- Custom designed APRS beacon and balloon release controller
- Uses accelerometer to sense balloon burst
- Commands RELEASE to release balloon from flight string upon burst
- Bluetooth linked to the RELEASE
- ~1-Watt 2m radio (different frequency from the BOTTOM)

### **ADS-B**

- uAvionix ping200XR ADS-B Mode S Transponder
- Uses 1090MHz

### BOTTOM

- Byonics-based APRS digipeater and beacon
- < 1-Watt 2m radio (different frequency from the TOP)</li>

## EOSS PAYLOADS

### **RELEASE** - cutdown system

**TOP** APRS beacon

![](_page_13_Picture_25.jpeg)

![](_page_13_Picture_26.jpeg)

![](_page_13_Picture_27.jpeg)

![](_page_13_Picture_28.jpeg)

![](_page_14_Picture_1.jpeg)

![](_page_15_Figure_1.jpeg)

## **RELEASE PROCESS**

- 1. Armed at 70k feet
- 2. Accelerometer in TOP beacon detects free fall after burst
- 3. "release" command sent to RELEASE via Bluetooth LE link
- 4. Warble tone transmitted over 2m radio to indicate burst
- 5. APRS message packet transmitted with max altitude
- 6. Servo on RELEASE opens, releasing balloon from flight string
- 7. Successful release and separation status transmitted using APRS and Morse code ("ok", "ok")
- 8. Typical release time of < 1 sec upon burst detection (servo movement takes the longest time)

![](_page_16_Figure_11.jpeg)

![](_page_17_Picture_1.jpeg)

ATMEL AVR PROCESSOR

### SWITCHING REGULATOR

## **RELEASE HARDWARE**

![](_page_17_Picture_6.jpeg)

### BLUETOOTH LE MODULE

![](_page_17_Picture_8.jpeg)

![](_page_17_Picture_9.jpeg)

## TNC/RADIO BOARD HARDWARE (THE TOP)

BAROMETER

تي 20\_10 N\_D\_N

KCOD DIGI

- 2+ 1+ BATTERY

### THERMOCOUPLE AMPLIFIER

### GPS USB

### STM32H7 PROCESSOR

BUCK/BOOST SWITCHING REGULATOR

## THERMOCOUPLE

**BLUETOOTH** 

LE & BT 2.0 MODULES ACCELEROMETER USB CONFIG PORT ~1W 2M **DRA818V** RADIO GPS ANTENNA WITH LNA **BLUETOOTH LE DIPOLE** 

![](_page_18_Picture_7.jpeg)

## TNC/RADIO BOARD HARDWARE (THE TOP)

GPS ANTENNA FACING SKY

COMPONENT SIDE FACES INWARD

![](_page_19_Picture_3.jpeg)

TUBE FOR FLIGHT STRING

BATTERY BOARD 1 OR 2 CELLS

BATTERY BOARD

![](_page_19_Picture_7.jpeg)

![](_page_19_Picture_8.jpeg)

## **ALTITUDE VS TEMPERATURE ON DECENT**

![](_page_20_Figure_1.jpeg)

![](_page_20_Picture_3.jpeg)

![](_page_21_Picture_0.jpeg)

## What

APRS application to aid operators in payload recovery

### **Primary Features**

- Software based (no traditional radios)
- Simultaneous reception of APRS packets on multiple frequencies
- Offline maps (OpenStreetMap)
- Landing predictions
- Light weight user interface leverages a web browser
- Receive only, nothing transmitted or uploaded to the Internet (\*\*)

\*\* With a valid ham radio callsign, igating and RF beaconing are configurable

## **SDR-BASED APRS TRACKER**

![](_page_22_Picture_13.jpeg)

![](_page_22_Picture_15.jpeg)

![](_page_22_Picture_16.jpeg)

## SOFTWARE DEFINED RECEIVER - BASIC IDEA

**GPS** Puck

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

- Small computer \* SDR USB dongle
- 2m antenna
- USB GPS puck
- Ubuntu Linux
- Open-source software

\* Specs: Intel I5-4200U (4 core), 8GB Mem, 512GB storage

### Wifi Network

![](_page_23_Picture_11.jpeg)

- Web-based interface
- Device of choice
- No wires
- Multiple device/user connections

![](_page_23_Picture_17.jpeg)

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_3.jpeg)

## WEB-BASED INTERFACE

## System Status

| ( | 1 |    | 1) |
|---|---|----|----|
|   |   | Ň. | J  |
|   | R |    |    |
|   | R | Ň  |    |
| C | P |    |    |

| Antenna #0       | Details                |  |
|------------------|------------------------|--|
|                  | 144.390MHz (12000)     |  |
|                  | 144.340MHz (12001)     |  |
| Frequencies      | 144.905MHz (12002)     |  |
|                  | 145.645MHz (12003)     |  |
|                  | 145.765MHz (12004)     |  |
| GnuRadio Status  | [Οκαγ]                 |  |
|                  | RTL-SDR #: 0           |  |
| SDR Information  | Product: RTL2838UHIDIR |  |
|                  | Manufacturer: Realtek  |  |
|                  | Serial No: goo         |  |
| Igating Status   |                        |  |
| Beaconing Status | [NO]                   |  |
|                  |                        |  |

### Existing Flights

| EOSS-320 (tracking) |          |                          |                         |  |
|---------------------|----------|--------------------------|-------------------------|--|
| Ex                  | EOSS-320 | Wstmnstr Acad Heavy      | Launch Site: Deer Trail |  |
| R                   | AE0SS-13 | 144.340 MHz              | Bottom - Digi EOSS      |  |
|                     | KC0D-I   | 145.645 MHz              | Top - Release Adam      |  |
|                     | KC0D-3   | 145.765 MHz              | Qual                    |  |
| EOSS-319 (TRACKING) |          |                          |                         |  |
| <b>a</b>            | EOSS-319 | Wstmnstr-EvrGrn HS Heavy | Launch Site: Deer Trail |  |
| R                   | AE0SS-12 | 144.340 MHz              | Bottom - Digi EOSSA     |  |
| Iz                  | KC0D-14  | 144.905 MHz              | Top - Release Baker     |  |

### KC0D Payload Environmentals

![](_page_25_Figure_7.jpeg)

![](_page_25_Figure_8.jpeg)

![](_page_25_Figure_9.jpeg)

![](_page_25_Figure_10.jpeg)

![](_page_25_Picture_11.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_27_Figure_0.jpeg)

**APRS Packets** 144.390MHz 144.340MHz 144.905MHz

•••

**APRS** Packets 145.645MHz 145.710MHz 145.535MHz

Data Acquisition

• • •

## **CORE CONCEPT**

### Database

## Data Storage

## Graphical Interface

## Presentation

![](_page_28_Picture_9.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_4.jpeg)

**Processing Direction** 

![](_page_31_Picture_7.jpeg)

## **GNURADIO: LOTS-O-PROCESSING CHAINS**

### **Benefits**

- Frequency agile (within spectrum width)
- Parallel processing
- Processing chains built dynamically at startup
- Platform tested with up to 9 processing chains
- Always listens on 144.39MHz

![](_page_32_Picture_7.jpeg)

ID: lowpass\_filter\_0 Gain: 20 Sample Rate (Hz): 2.016M Cutoff Freq (Hz): 5.5k Transition Width (Hz): 1k Window: Hann Beta: 6.76

> Spectrum Width of ~2MHz

![](_page_32_Figure_10.jpeg)

## DIRE WOLF

### **Dire Wolf Configuration File**

Channel #1 Frequency: 144.39MHz # RTL: 0 ADEVICE0 udp:12000 null ARATE **50000** AUDIO FROM ACHANNELS 1 CHANNEL 0 GNURADIO MYCALL N6BA-10 MODEM 1200 FIX\_BITS 1 Channel #2 Frequency: 144.34MHz # RTL: 0 ADEVICE1 udp:12001 null ARATE 50000 AUDIO FROM ACHANNELS 1 CHANNEL 2 GNURADIO MYCALL N6BA-10 MODEM 1200 FIX\_BITS 1 Channel #3 Frequency: 145.535MHz # RTL: 0 ADEVICE2 udp:12002 null ARATE 50000 AUDIO FROM ACHANNELS 1 CHANNEL 4 GNURADIO MYCALL N6BA-10 MODEM 1200 FIX\_BITS 1

.. other config info..

APRS PACKETS (TEXT)

![](_page_33_Picture_5.jpeg)

### Dire Wolf

![](_page_33_Picture_7.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_34_Figure_1.jpeg)

## APRSC

### aprsc Configuration File

| Id <mark>E0SS01949</mark>           |                               |
|-------------------------------------|-------------------------------|
| de xxxxx                            |                               |
| n "HAB Tracker"                     |                               |
| l me@emailnotset.local              |                               |
| data                                |                               |
| ate 10 5                            |                               |
| amTimeout 15s                       |                               |
| Fimeout 48h                         |                               |
| <mark>"Full feed"</mark>            | fullfeed tcp :: 10152 h       |
| П П                                 | fullfeed udp :: 10152 h       |
| "Client-Defined Filters"            | igate tcp :: 14580            |
| пп                                  | igate udp :: 14580            |
| "Core rotate" ro tcp noam.aprs2.net | 14580 filter r/39.75/-103.6/4 |
| atus 0.0.0.0 14501                  |                               |
| nit 10000                           |                               |
|                                     |                               |

Note: Custom code added to APRSC for custom server-side filtering of the full feed.

![](_page_34_Picture_6.jpeg)

### **During the Ascent**

Wind vectors (N, S, E, W) are saved from the ascent to be reapplied during the descent Updraft/downdraft wind vectors are estimated by comparison to mean values for ascent velocities

### **During the Descent**

- Upper portion of descent uses curve fitting (A)
- Lower portion of descent uses drag equation for parachutes (B)
- Uses a piecewise, weighted function for predictions

![](_page_35_Figure_7.jpeg)

## LANDING PREDICTIONS: PLOTTING

### About

- Plotted separately for each beacon on a flight
- Icon on the map (+ marks the spot)
- Runs automatically, no user intervention required

![](_page_36_Figure_5.jpeg)

Approximate burst location plotted on map for each beacon

![](_page_36_Picture_7.jpeg)

2

Predicted landing location plotted on map for each beacon

![](_page_36_Picture_10.jpeg)

- Self aware beacons. Working to have the APRS beacons predict their own landing location and transmit that.
- other maps.
- awareness and communications.
- leveraged with landing predictions.
- Higher performance SDR
- 5GHz Wifi
- NVidia Jetson for in-vehicle GPU acceleration of workloads
- Endless pursuit of decimal dust!!!

## **FUTURE IDEAS**

Advanced mapping. Google Earth Pro and other online sources can provide satellite imagery, topographical, and

• APRS messaging and status. Transmissions of arbitrary APRS status and message packets to enhance situational

• Analysis using GPU acceleration. Analysis of past EOSS and radiosonde flights could yield interesting results to be

![](_page_37_Picture_15.jpeg)

![](_page_38_Picture_1.jpeg)

## WHERE CAN YOU HELP?

## ...wherever you want!

- Customer relationships
- Ground station
- Launch team
- Fill team
- Tracking teams
- FAA interfacing
- Technology (beacons, tracking software, etc.)
- Club leadership
- Club website management
- ...and everywhere in between

![](_page_39_Picture_13.jpeg)

![](_page_39_Picture_14.jpeg)

![](_page_40_Figure_1.jpeg)

Who

## Jeff Shykula (EOSS Vice President)

N2XGL

![](_page_40_Figure_4.jpeg)

![](_page_40_Picture_5.jpeg)

![](_page_41_Picture_0.jpeg)

![](_page_41_Picture_1.jpeg)

![](_page_41_Picture_2.jpeg)

![](_page_42_Picture_1.jpeg)