
(FOR HAMS)
TRISTAN HONSCHEID, NM0TH

FEB 2024





WHAT IS GIT?

• Version control system

• Designed for software development

• But can be used and abused for other things

• Powerful tool for organizing, sharing, and tracking your work

Source: 
https://commons.wikimedia.org/wiki/File:Revisi
on_controlled_project_visualization-2010-24-
02.svg



OTHER VERSION CONTROL SYSTEMS

• Subversion (SVN)

• Mercurial (Hg)

• Revision Control System (RCS)

• Commercial offerings…



MISCONCEPTIONS

• “But I’m not a software developer!”

• Software playing a larger role in Ham Radio than ever before

• Also useful for storing configs, documentation, KiCad projects, codeplugs, etc

• “It’s too much overhead for what I need”

• Simple workflows exist

• Lots of benefits

• “Won’t everything I write be public on Github.com?”

• No -- Totally different things



USING GIT

Command line GUI clients



STARTING OUT

• Init: Start a brand new repository locally (git init)
• Run inside your project directory

• Creates a .git directory to store the Git database

• Add files now or later

• Clone: Copy a repository from somewhere else (git clone)
• Creates a populated working tree plus .git directory



COMMITS

• Each commit:

• Stores a snapshot of your working tree

• Has an author, date, and description (commit message)

• Points to one or more parent commits

• Is identified by a hexadecimal hash

• git show <hash>

• git log

a53bc0
“Initial commit”

bd197c
“Add server code”

03fe12
“Fix a bug”



CREATING COMMITS
• Tracked vs untracked files

• By default, everything is untracked.

• Good to track: source code, documentation, etc…

• Leave untracked: build outputs, temp/autosave files, editor or file explorer litter (thumbs.db, .DS_Store, etc)

• .gitignore

• Staging
• Select changes to go into a commit

• Stage changes by by add-ing them (git add <file>)

• Commit the staged changes (git commit)



BRANCHING

• You’ve been on a default branch called main.

• Branches are just pointers

• Let you diverge and work on concurrent features

• git branch and git checkout

a53bc0
“Initial commit”

bd197c
“Add server code”

03fe12
“Fix a bug”

main

4a49b0
“Try something 

new”

feature1



MERGING

• Combine lineages back together (git merge)

• Creates a merge commit with multiple parents

• Potential for merge conflicts
• Need to be manually rectified

• Alternative method: rebasing

• Replay commits over another branch

a53bc0
“Initial commit”

bd197c
“Add server code”

03fe12
“Fix a bug” 4a49b0

“Try something 
new”

8ea17b
“Blah”

993ac0
“More code”

5d6e90
”merge in branch”



REMOTES

• Git can send and receive commits to/from other instances of the repository 
• Collaborate among multiple users

• Can be on same filesystem but usually a remote system accessed via HTTP or SSH

• Frequently, the remote is a repository hosting service like Github, Gitlab, Bitbucket, etc…

• git push, git pull, git clone, git fetch



GIT HOSTING PROVIDERS (GITHUB, ETC)

• Provide a ”hub” for multiple users to work off of.

• Safe storage of the repository

• Web front-end for viewing code

• Collaboration tools (issue tracker, wikis, etc)

• CI/CD systems

• Access control 

• Fork somebody else’s repo so you can work on it

• Pull request / merge request –procedure for approving proposed 
changes before merging



TYPICAL OPEN-SOURCE CONTRIBUTION WORKFLOW

https://github.com/RMHAM/
co-ares-catalog

https://github.com/yourgithub/
co-ares-catalog

Local repo 
on your PC

Fork

Pull Request
(PR)

Your fork

Upstream
STOP



FURTHER READING

• Official reference and tutorial: https://git-scm.com/doc

• Lots of other guides and tutorials available online

https://git-scm.com/doc

