Direction Finding Workshop

2024-11-16 Chris Keller KØSWE Dan Meyer NØPUF

Agenda

• Basic Techniques

- Body Blocking
- Directional Antennas
- Passive and Active Attenuators
- Triangulation
- Advanced Techniques
 - Doppler and TDOA
 - KN2C
 - Kraken
 - Doppler Systems
 - Outdoor Demonstration

Basic Techniques

Body Blocking

- All it takes is an HT!
- Hold close to your chest and turn around
- Weakest signal indicates when you're facing away
- Use your body as an attenuator

Directional Antenna

- Antennas with directional gain
- Yagi and Log-Periodic

Attenuator

- Once close to the transmitter, even directional antennas can get swamped
- Attenuation can "turn down the volume" on the signal
- Passive vs Active Attenuation

Triangulation / LOP

- Once you know which direction the transmitter is, do you go directly toward it?
- Move in the oblique direction and take another bearing 2-3 times
- Avoids overshooting the transmitter, and helps identify bouncing
- Lines of Position (LOP) thx Brad!

Super Tangent Time

- Call Of Duty Black Ops (2010) had a <u>numbers</u> <u>station</u> as a Macguffin Image
- Sleeper agents could hear broadcast in their head
- Impossible to figure out where the signal was coming from?

Echelon 3 24 20 12 19 17 17 22 19 23 19 4 0 7 6 7 19 10 12 16 17 6 14 4 3 17 24 20 13 24 8 16 17 1 24 9 21 15 0 5 15 4 4 23 6 11 25 14 4 20 4 9 14 18 12 8 7 21 6 4 21 7 21

Advanced Techniques

Doppler and TDOA

Doppler Concept of Operations

- Object emitting a wave at a certain frequency
 - Moving toward observer pushes the frequency higher
 - Moving away observer pulls the frequency lower
- Requires emitter to be moving relative to sensor physically or virtually
- Can't control the emitter? Move the sensor!
- Only requires one receiver with good frequency precision

TDOA Concept of Operations

- Time Difference of Arrival
- Given several receivers and antennas, detect the order a signal hits them
- Requires several independent receivers, but they don't need to be particularly sensitive
- However, accurate timing, "phase coherence," is critical

KN2C DF2020T Radio Direction Finder

- Doppler-based system
- Designed and sold by Gyo An KN2C in NY
- <u>http://www.kn2c.us/</u>

Doppler Systems

- Commercial mobile doppler system
- "Doppler Doug"
- <u>https://dopsys.com/</u>

Kraken RF

- Kraken SDR includes TDOA-based DFing
- Not ham-specific, but covers 24 MHz to 1766 MHz
- Reprogrammable DAQ and DSP, including with GNU Radio!
- <u>https://www.krakenrf.com/</u>

Accuracy

- Are the "advanced" rigs more accurate?
- Not necessarily!
- Human precision with Yagi ~5° arc
- Kraken precision ~10-25° arc
- They just take more measurements and automatically integrate data

Accuracy

1) Enter desired frequency.

Desired Freq (MHz)

Instructions

FREQUENCY TO ARRAY RADIUS

Array sizing must use a spacing multiplier less than 0.5 in order to avoid ambiguities.

However, a smaller radius has less resolving resolution. Ideally you want use a radius with a spacing multiplier close to 0.5. But physical size limitations may take priority.

E.G. If the Rayleigh Super-Resolution is 10 legrees, we can say that the signal source is somewhere within a 10 degree arc.

We consider a resolution of 0 - 25 degrees acceptable for direction finding.

p				2.068965517	145
E.	Est. Resolution (Degrees)	Max Radius (cm)	Unit Radius	Interelement Spacing (cm)	Spacing Multiplier
de	8.217337869	88.00 cm	0.4253254042	103.4482759	0.5
	9.13037541	79.20 cm	0.3827928638	93.10344828	0.45
W	10.27167234	70.40 cm	0.3402603233	82.75862069	0.4
	11.7390541	61.60 cm	0.2977277829	72.4137931	0.35
	13.69556311	52.80 cm	0.2551952425	62.06896552	0.3
	16.43467574	44.00 cm	0.2126627021	51.72413793	0.25
	20.54334467	35.20 cm	0.1701301617	41.37931034	0.2
	27.39112623	26.40 cm	0.1275976213	31.03448276	0.15
	41.08668934	17.60 cm	0.08506508084	20.68965517	0.1

2) Decide on an appropriate antenna array radius based on physical limitations and desired resolution.

Wavelength Lambda (Meters)

Demonstration

